

THREE HAWTHORN PARKWAY, SUITE 400 VERNON HILLS, IL 60061-1450 708-918-4000 • FAX: 708-918-4055

23 September 1992

W.O. No.: 4500-09-97-0001

Mr. Wayde Hartwick, HSM-6J Remedial Project Manager U.S. Environmental Protection Agency 77 West Jackson Boulevard Chicago, Illinois 60604

EPA Contract No: 68-W8-0089

Work Assignment No.: 009-5PJ9

Document Control No.: 4500-09-AFXL

Re: ISVE Enhancement for Semivolatile Organic Compounds (SVOCs)

and Polychlorinated Biphenyls (PCBs)

Dear Mr. Hartwick:

At your request, Roy F. Weston, Inc. (WESTON) has examined the potential applicability of enhancements to conventional in-situ vapor extraction (ISVE). The purpose of considering the enhancements is that some of the contaminants at the ACS Site are not readily removed by conventional ISVE.

Results

WESTON has identified two promising emerging technologies that use enhancements to conventional ISVE to remove a wider range of organic contaminants. These technologies are known as thermally enhanced ISVE and biologically enhanced ISVE (also known as bioventing). Both enhancements are currently in the preliminary stages of development to assess their usefulness on a wide range of contaminants, so information regarding them is scarce. Even so, we were able to identify a total of seven vendors for the enhanced technologies.

Mr. Wayde Hartwick -2-U.S. Environmental Protection Agency 23 September 1992

Thermally Enhanced ISVE

Thermally enhanced ISVE uses electrodes, steam, or hot air to encourage volatilization of recalcitrant organics. All of the vendors claim that their systems remove SVOCs, and one even claims that it can remove PCBs. Information from the VISITT database regarding thermally enhanced ISVE is attached.

Bioventing

Bioventing adds vapor-phase ammonia and phosphorous to the vadose zone, encouraging growth of heterotrophic bacteria which metabolize nonhalogenated organic carbon (including nonhalogenated SVOCs) as a food source. Halogenated SVOCs and PCBs are much less amenable to bioventing as halogenated organics are not aerobically degraded. Most of the vendors of bioventing make indirect reference to ability of their systems to reduce halogenated SVOCs by cometabolism. One vendor claims that its bioventing system can remove PCBs. Information from the VISITT database regarding thermally enhanced ISVE is attached.

Conventional ISVE

To provide a baseline comparison against the enhanced systems, WESTON has also identified several vendors of conventional ISVE that claim they can remove SVOCs. These claims should be viewed cautiously because the physical properties of SVOCs assure that they will be challenging for any ordinary ISVE system. The information from the VISITT database is attached.

Summary

WESTON believes that either bioventing or thermally enhanced ISVE would potentially improve the probability of attaining the treatment objectives for a broad range of organic chemicals at the ACS Site compared to the probability of success with conventional ISVE. Because the technologies are so new and unfamiliar, it is difficult to predict their performance with any certainty. If U.S. EPA would like to investigate these technologies,

Mr. Wayde Hartwick U.S. Environmental Protection Agency

23 September 1992

the Remedial Design phase of the project could begin with parallel treatability testing of the various ISVE enhancements at the laboratory scale. The lab-scale testing program would generate the quantitative data needed to select the particular technology with some assurance that it can achieve the required cleanup levels. Alternatively, the results of the investigation of the technologies under ongoing SITE demonstrations can be used to predict the applicability at the ACS Site.

-3-

If you have any questions or require additional clarification, please call.

Very truly yours,

ROY F. WESTON, INC.

Robert H. Gilbertsen, P.E. Project Engineer

James M. Burton, P.E.

ones M. Buton

Site Manager

Attachments

RHG:JMB/kvh

VISITT INFORMATION FOR CONVENTIONAL ISVE

Page No. 1 of 14 09/18/92

UNITED STATES ENVIROMENTAL PROTECTION AGENCY VENDOR INFORMATION SYSTEM FOR INNOVATIVE TREATMENT TECHNOLOGIES (VISITT)

Part 1: General Information and Technology Overview

Date submitted: 11/14/91
Developer/Vendor name: AWD TECHNOLOGIES
Street address: 15204 Omega Drive
Suite 200
City: Rockville State: MD Zip: 20850
Country: USA
Contact name: Mr. Robert Kleinsteuber
and title: Manager, Marketing Communications
Contact phone: (301) 948-0040
Telex number: () -
Standard technology type:
SOIL VAPOR EXTRACTION
Technology name assigned by vendor (e.g., trade name):
AquaDetox/VES
Technology is being or has been tested in EPA SITE Program ? Yes
Literature on technology available on request ? Yes

Page No. 2 of 14 09/18/92

Part 1: General Information and Technology Overview (continued)

Page No. 3 of 14 09/18/92

Part	1:	General	Information	n and	Technology	Overview	(continued)

Vendor name:	AWD TECHNOLOGIES
Technology type:	SOIL VAPOR EXTRACTION
Technology highlic	ghts:
contaminant disch	addressing both contaminated soil and water. Lower arges of effluent and air due to high efficiency site absorption regeneration.
with research capa	e of more than 90 of the 100+ priority pollutants ability to provide necessary data for process design pilot testing program.
	ring capabilities, including process simulation of their effect on metallurgy and operability.
	·····
-	
	
	

Page No. 4 of 14 09/18/92

Part 1: General Information and Technology Overview (continued)

Vendor name...: AWD TECHNOLOGIES

Technology type: SOIL VAPOR EXTRACTION

Technology status:

- Bench scale or emerging. Technology shown to be feasible through the use of bench-top equipment in the laboratory. Available data cannot be used to scale up to full scale in the absence of additional pilot-scale or full-scale experience for similar applications.
- X Pilot scale. Available equipment is of sufficient size to verify technology feasibility or establish the design and operating conditions for a full-scale system. However, it is not of the size typically used for a cleanup.
- Full scale. Available equipment is sized and commercially available for actual site remediation.

Potential or actual waste/media treated:

- X Soil
- Sludge
- Solid
- Natural sediment
- _ Ground water in situ

Part 1: General Information and Technology Overview (continued)

Vendor name: AWD TECHNOLOGIES					
Technology type: SOIL VAPOR EXTRACTION					
Potential or actual contaminants and contaminant groups treated by this technology:					
Organic	Inorganic				
\underline{X} Halogenated volatiles	Heavy metals				
X Halogenated semivolatiles	Nonmetallic toxic elements				
\underline{X} Nonhalogenated volatiles	Radioactive metals				
X Nonhalogenated semivolatiles _	Asbestos				
X Organic pesticides/herbicides _	Inorganic cyanides				
Dioxins/furans _	Inorganic corrosives				
PCBs					
\underline{X} Polynuclear aromatics (PNAs)	Miscellaneous				
X Solvents	Explosives/propellents				
X Benzene-toluene-ethylbenzene- xylene (BTEX)	Organometallic pesticides/ herbicides				
_ Organic cyanide					
_ Organic corrosives					
Others:					

Part 1: General Information and Technology Overview (continued)

V€	endor name: AWD TECHNOLOGI	<u>ES</u>	
Te	echnology type: SOIL VAPOR EXT	RAC	TION
	eneral sources or types of indunat the technology can address:		ial waste or contaminated sites
<u>x</u>	Agriculture	X	Paint/ink formulation
_	Battery recycling/disposal	_	Pesticide manufacturing/use
_	Chloro-alkali manufacturing	<u>x</u>	Petroleum refining and reuse
_	Coal gasification	_	Photographic products
<u>x</u>	Dry cleaners	_	Plastics manufacturing
_	Electroplating	_	Pulp and paper industry
<u>x</u>	Herbicide manufacturing/use	x	Other organic chemical manufacturing
<u>x</u>	Industrial landfills	_	Other inorganic chemical manufacturing
_	Inorganic/organic pigments	X	Semiconductor manufacturing
_	Machine shops	x	Rubber manufacturing
_	Metal ore mining and smelting	X	Wood preserving
<u>x</u>	Municipal Landfill	_	Uranium mining
_	Munitions Manufacturing		
Οŧ	hers:		
_			
			
	·		

Page No. 7 of 14 09/18/92

Part 1: General Information and Technology Overview (continued)

Vendor name...: AWD TECHNOLOGIES

Technology type: SOIL VAPOR EXTRACTION

Technology limitations:

VES:

Soil stratigraphy and water table are key components to an effective soil vapor extraction system. Therefore, if the water table is very close to the surface or the soil has little porosity, the effectiveness of the system will be greatly reduced.

STEAM STRIPPING:

Solubility of contaminant in the water is one of the most important factors in consideration of this technology. While organic compounds with solubilities in the present range are feasible, removal by free phase separation is adversely affected.

Use of steam requires utility water be available for generation of boiler feed water. If potential site does not afford such, it is not applicable.

Certain natural occurring conditions may exist with the water in question to make use of this technology impractical without treatment of the aquifer prior to stripping.

Some 90 compounds of the EPA Priority Pollutant List have been identified as potential candidates for steam stripping and some of which are known to have boiling points greater than 200 degrees C. There are no physical minimum contaminant limitations of the technology. Maximum limits are for the most part, the solubility limit of the contaminant in water. For some contaminants, test results have shown high efficiency removals can still be achieved with free phase product occurring in the water.

Technology status comments:

The integrated technology has been operated successfully for over three years. Independent systems have been installed and operated over many more years. As AWD's parent company, Dow was the inventor of part of this technology, and many years of experience through some 45 operating units within the Dow Chemical Company have devleoped a significant database and operating discipline for application of the technology.

Significant improvements have occurred within the process design of the stripping technology through greater understanding of inorganic contaminants and their impact upon the operation of the system. Page No. 8 of 14 09/18/92

PART 2: Pilot- and Full-scale Technologies:
Detailed Information and Performance Data

Vendor name...: AWD TECHNOLOGIES

Technology type: SOIL VAPOR EXTRACTION

Vendor services:

- X Equipment manufacture
- X Subcontractor for cleanup services
- X Prime contractor for full-service remediation

Pilot-scale Equipment/Capabilities

Major unit processes:

The pilot system consists of a vacuum pump and tank. Wells, piping, and emissions control, if required, are field adapted.

The integrated AquaDetox/VES continuous system developed and patented by AWD Technologies, Inc. simultaneously treats groundwater and soil contaminated with VOCs. This technology integrates two basic processes: (1) a high-efficiency, moderate vacuum stripping tower (tower pressure no less than 50 mm Hg) that uses low-pressure steam to treat contaminated groundwater and (2) a vapor extraction system (VES) that removes contaminated soil for subsequent treatment with granular activated carbon (GAC).

Integrating the two technologies creates a closed-loop system, providing simultaneous remediation of contaminated groundwater and soil with virtually no air emissions. By carefully engineering the VES extraction pressures and introducing phase transfer elements as needed, the contamination extracted by the VES can be transferred to the AquaDetox system, where it is ultimately recovered in recyclable liquid form. This eliminates many significant air quality permitting requirements. Both groundwater and soil remediation are performed simultaneously with no discharge to the atmosphere or sewer. Also, there is no contaminated GAC to require disposal since the carbon beds are regenerated with steam, and the contaminated steam is injected into the AquaDetox unit.

 <u> </u>	 	
	 	

Detailed Information and Performance Data (continued) Vendor name....: AWD TECHNOLOGIES Technology type: SOIL VAPOR EXTRACTION Number of pilot-scale systems: ____1 Planned/in design _____ Under construction 1 Constructed Pilot-scale facility is: X Transportable _ Fixed In situ Pilot capacity range per hour. Capacity of batch processes is prorated. to _____ Can you conduct pilot-scale treatability studies on some type of waste at your location? At a contaminated site? Yes Quantity of waste needed for pilot-scale treatability study: _____ to ____

Number of pilot-scale studies conducted on wastes from different sources

____3

or sites. Does not include tests on surrogate wastes.

PART 2: Pilot- and Full-scale Technologies:

Page No. 10 of 14 09/18/92

Vendor	name	B:	AWD TECHNOLOGIES		
Techno	logy	type:	SOIL VAPOR EXTRACTIO	N .	
Full-s	scale	Equipme	ent/Capabilities		
M	ajor	unit p	ocesses:		
2 3 8 1	one. ichier sent i	Carbon ved using to the vill fundamental contractions of the vill fundamental contrac	beds remove the orga g steam. The regene acuum steam stripper tioning well after t	jection wells in the vadose nics. On site regeneration ration steam is condensed a for final cleanup. The cahree years. We anticipate en years as most probable.	n is and arbon
_		····			
_		 -		·	
_				***************************************	
_			· · · · · · · · · · · · · · · · · · ·		
_					
					<u></u> -
-					
	· <u>·</u>				
-	- <u></u>				
-	<u> </u>			· · · · · · · · · · · · · · · · · · ·	
-		<u></u>			
-				<u></u>	
-					
-					

Page No. 11 of 14 09/18/92

activities.

PART 2: Pilot- and Full-scale Technologies: Detailed Information and Performance Data (continued)

Vendor name: AWD TECHNOLOGIES
Technology type: SOIL VAPOR EXTRACTION
Full-scale facility is:
_ Transportable X Fixed _ In situ
Location of fixed facility:
City: State:
Full capacity range per hour:
600.00 to 1000.00 Gal/hour
Logistical requirements for transportable or in situ technologies:
Space (area): 100 ft2
Water gals. per day
Electrical power: 75 amps
110 volts
Natural gas: ft3 per day
Sewage access: _ yes X no
"Ballpark" estimate of price range per unit of waste treated:
20.00 to 50.00 per Cubic yard
Price estimates shown above do not always include all indirect costs associated with treatment, such as: excavation, permits and treatment of residuals. For price comparisons, users should make

certain that vendors provide estimates based on comparable remediation

Page No. 12 of 14 09/18/92

Vendor name: AWD TECHNOLOGIES	
Technology type: SOIL VAPOR EXTRACTION	
Factors that have significant effect on u	unit price (l is highest):
5 Initial contaminant concentration	on Excavation
5 Target contaminant concentration	m Waste handling
5 Waste quantity	2 Permitting
5 Depth of contamination	Pretreatment
3 Depth to ground water	Amount of debris
5 Residual quantity	8 Utility/fuel rates
1 Residual waste characteristics	7 Labor rates
6 Site preparation	
Others:	
4 Soil permeability	
· · · · · · · · · · · · · · · · · · ·	

Page No. 13 of 14 09/18/92

Vendo	name:	AWD TECHNOLOGIES	
Techno	ology type:	SOIL VAPOR EXTRACTION	
	Number of full is to	ll-scale cleanups initiated or completed by this firm schnology:	
_	1		
I		t manufacturers - estimated or actual number of full-scal other firms using this equipment:	6
-			
		s obtained for a full-scale system, and issuing .g., RCRA, TSCA, NPDES, and Clean Air Act).	
I	Permit Type Issuing Autho	ority.:	
I	Permit Type Issuing Autho	ority.:	
1	Permit Type Issuing Autho	ority.:	
1	Permit Type (ssuing Autho	ority.:	
N	Number of ful	ll-scale systems:	
_	1 Planne	ed/in design	
_	Under	construction	
_	Constr	ructed	

Page No. 14 of 14 09/18/92

Vendor name.	: AWD TECHNOLOGIES
Technology t	ype: SOIL VAPOR EXTRACTION
Treatability	Study Capabilities (Bench Scale)
Can you of wast	conduct bench-scale treatability studies on some types e at your location: X yes _ no
	of bench-scale studies conducted to date. ot include tests on surrogate wastes:
Descrip	otion of bench-scale testing procedures:
Not pra	actical.
	· · · · · · · · · · · · · · · · · · ·

UNITED STATES ENVIROMENTAL PROTECTION AGENCY VENDOR INFORMATION SYSTEM FOR INNOVATIVE TREATMENT TECHNOLOGIES (VISITT)

Part 1: General Information and Technology Overview

Date submitted: 09/28/91
Developer/Vendor name: OHM CORPORATION
Street address: 2950 Buskirk Ave., Suite 315
City: Walnut Creek State: CA Zip: 94596
Country: USA
Contact name: Robert Cox and title: Director, In Situ Remediation
Contact phone: (510) 256-7187
Telex number: () -
Standard technology type:
SOIL VAPOR EXTRACTION
Technology name assigned by vendor (e.g., trade name):
Technology is being or has been tested in EPA SITE Program ? No
Literature on technology available on request ? Yes

Page No. 2 of 26 09/18/92

Part	1.	Coneral	Information	and	Technology	Overview	(continued)
rarc	1.	GEHELT	THIOTHERION	GIIG.	TACIMIOTODA	OAETATEM	(CONCINCED)

Vendor name...: OHM CORPORATION

Technology type: SOIL VAPOR EXTRACTION

General description of technology:

In situ soil vapor extraction involves extraction of air containing volatile chemicals from unsaturated soil. IN OHM's patented process (U.S. Patent No. 4,435,292), clean air is injected or flows into the subsurface at locations around a spill site, and the vapor-laden air is withdrawn under vacuum from recovery or extraction vents. A typical system consists of:

- (1) one or more extraction vents,
- (2) one or more air inlet or injection vents (optional),
- (3) piping or air headers,
- (4) vacuum pumps and/or air blowers,
- (5) flow meters and controllers,
- (6) vacuum gauges,
- (7) sampling ports,
- (8) air/water separator, and
- (9) vapor treatment system.

OHM also uses soil pile vapor extraction technology to treat contaminated soil ex situ. The soil pile vapor extraction process is the same as the in situ process described above with the exception that the contaminated soil is excavated from the site. The excavated material is placed in a pile containing the air injection and extraction piping. The soil pile is covered with a plastic membrane to prevent volatile emissions.

contaminant	atment varies . Treatment i xidation, and	ncludes activ		
			 	•
				
			 ··· ·	

Page No. 3 of 26 09/18/92

Part 1: General Information and Technology Overview (continued)

Vendor name:	OHM CORPORATION
Technology type:	SOIL VAPOR EXTRACTION
Technology highli	ghts:
volatile organic extraction proces soil and can be chas been demonstra process can be use	tion is a cost-effective technique for the removal of chemicals (VOCs) from contaminated soils. Soil vapor ses cause minimal disturbance of the contaminated onstructed from standard equipment. The technology ated at both pilot- and field-scale levels. The ed to treat large volumes of soil that would be ensive to excavate, and there is a potential for the olatile material.
	
	
	
	

Page No. 4 of 26 09/18/92

Part 1: General Information and Technology Overview (continued)

Vendor name....: OHM CORPORATION

Technology type: SOIL VAPOR EXTRACTION

Technology status:

- Bench scale or emerging. Technology shown to be feasible through the use of bench-top equipment in the laboratory. Available data cannot be used to scale up to full scale in the absence of additional pilot-scale or full-scale experience for similar applications.
- Pilot scale. Available equipment is of sufficient size to verify technology feasibility or establish the design and operating conditions for a full-scale system. However, it is not of the size typically used for a cleanup.
- \underline{X} Full scale. Available equipment is sized and commercially available for actual site remediation.

Potential or actual waste/media treated:

- X Soil
- Sludge
- X Solid
- Natural sediment
- Ground water in situ

Part 1: General Information and Technology Overview (continued)

Ve	ndor name: OHM CORPORATION	
Te	chnology type: SOIL VAPOR EXTRACT	ION
	tential or actual contaminants and is technology:	contaminant groups treated by
	Organic	Inorganic
<u>x</u>	Halogenated volatiles	_ Heavy metals
<u>x</u>	Halogenated semivolatiles	Nonmetallic toxic elements
<u>x</u>	Nonhalogenated volatiles	_ Radioactive metals
<u>x</u>	Nonhalogenated semivolatiles	Asbestos
_	Organic pesticides/herbicides	_ Inorganic cyanides
_	Dioxins/furans	_ Inorganic corrosives
_	PCBs	
_	Polynuclear aromatics (PNAs)	Miscellaneous
<u>x</u>	Solvents	_ Explosives/propellents
<u>x</u>	Benzene-toluene-ethylbenzene- xylene (BTEX)	Organometallic pesticides/ herbicides
_	Organic cyanide	
-	Organic corrosives	
Ot	hers:	
Pe	troleum Hydrocarbons (gasoline, die	sel)

Part 1: General Information and Technology Overview (continued)

Vendor name: OHM CORPORATION									
Technology type: SOIL VAPOR EXT	TRAC	TION							
General sources or types of induthat the technology can address:		ial waste or contaminated sites							
X Agriculture	_	Paint/ink formulation							
_ Battery recycling/disposal	<u>x</u>	Pesticide manufacturing/use							
_ Chloro-alkali manufacturing	_	Petroleum refining and reuse							
_ Coal gasification	_	Photographic products							
X Dry cleaners	<u>x</u>	Plastics manufacturing							
_ Electroplating	<u>x</u>	Pulp and paper industry							
\underline{X} Herbicide manufacturing/use	<u>x</u>	Other organic chemical manufacturing							
\underline{X} Industrial landfills	_	Other inorganic chemical manufacturing							
_ Inorganic/organic pigments	<u>x</u>	Semiconductor manufacturing							
X Machine shops	-	Rubber manufacturing							
\underline{X} Metal ore mining and smelting	, _	Wood preserving							
\underline{X} Municipal Landfill	_	Uranium mining							
_ Munitions Manufacturing									
Others:									
									
	,•								

Page No. 7 of 26 09/18/92

Part 1: General Information and Technology Overview (continued)

Vendor name...: OHM CORPORATION

Technology type: SOIL VAPOR EXTRACTION

Technology limitations:

This technology is not applicable to nonvolatile compounds, lubrication oils, heavy ends products from petroleum processing, and aliphatic carbon compounds with greater than 25 carbon atoms.

The soil characteristics at a site have a significant effect on the applicability of vapor extraction systems. Air conductivity controls the rate at which air can be drawn from soil by the applied vacuum. Grain size, moisture content, soil aggregation, and stratification are the most important properties. The soil moisture content is also important since it is easier to draw air through drier soils. As the size of a soil aggregate decreases, the time required for diffusion of the chemical out of the immobile regions also increases. However, even clayey or silty soils may be effectively ventilated by the usual levels of vacuum developed in a soil vapor extraction system.

In conjunction with soil properties, chemical properties will dictate whether a soil vapor extraction system is feasible. A vapor-phase vacuum extraction system is most effective at removing compounds that exhibit significant volatility at the ambient temperatures in soil, compounds exhibiting vapor pressures over 0.5 mm of mercury and compounds which have values of dimensionless Henry's Law constants greater than 0.01.

Technology status comments:

OHM has designed, fabricated, and operated a number of soil vapor extraction systems since 1980. These systems include both in situ and ex situ (soil pile) units.

Page No. 8 of 26 09/18/92

PART 2: Pilot- and Full-scale Technologies:
Detailed Information and Performance Data

Vendor name:	OHM CORPORATION
Technology type:	SOIL VAPOR EXTRACTION

Vendor services:

- X Equipment manufacture
- X Subcontractor for cleanup services
- X Prime contractor for full-service remediation

Pilot-scale Equipment/Capabilities

Major unit processes:

OHM's pilot scale soil vapor extraction unit contains all the elements required for installation of a treatment system on a single trailer. A vacuum pump pulls air saturated with volatile compounds from extraction wells or a soil pile. Condensate is removed in an air receiver vessel equipped with automatic level control to prevent liquid from entering the suction of the vacuum pump. Extracted air leaves the vacuum pump and is sent to a vapor treatment system. The vapor treatment system may include activated carbon, thermal destruction, catalytic destruction or UV/oxidation. Active or passive injection of air into the contaminated soil is also used.

Page No. 9 of 26 09/18/92

PART 2: Pilot- and Full-scale Technologies:
Detailed Information and Performance Data (continued)

Vendor name: OHM CORPORATION
Technology type: SOIL VAPOR EXTRACTION
Number of pilot-scale systems:
Planned/in design
Under construction
3 Constructed
Pilot-scale facility is:
X Transportable
Fixed
In situ
_ 11. 0104
Pilot capacity range per hour. Capacity of batch processes is prorated.
to
Can you conduct pilot-scale treatability studies on some type of waste at your location? Yes
At a contaminated site? Yes
Quantity of waste needed for pilot-scale treatability study:
10 to 100 Cubic yard
Number of pilot-scale studies conducted on wastes from different sources or sites. Does not include tests on surrogate wastes.

____3

Page No. 10 of 26 09/18/92

Vendor	nam	e:	OHM CORPOR	ATION			
Techno	logy	type:	SOIL VAPOR	EXTRACTION	<u> </u>		
Full-s	cale	Equipm	ent/Capabil	ities			
м	ajor	unit p	rocesses:				
s r f l p	ir sold point of the sold poin	aturate pile. ied. Co ver equ enterin s the v to dis	d with volamed with volamed and a sate is ipped with a g the suction acuum pump a charge. The rbon, thermal	tile compout to the soint removed from automatic long of the wand is sented vapor trees.	rstem uses a sinds from ext. I may be act on the vapor evel control acuum pump. To a vapor eatment systemion, catalyt	craction we cively or p stream in to preven Extracted treatment em may incl	lls or a assively an air t liquid air system ude
_							
_							
_						· · · · · ·	
_							
_			- 	<u></u>			
_				 			
_							
_			· 		<u> </u>		
_							
_							
_							
_							···

Page No. 11 of 26 09/18/92

activities.

Vendor name: OHM CORPORATION
Technology type: SOIL VAPOR EXTRACTION
Full-scale facility is:
X Transportable _ Fixed _ In situ
Full capacity range per hour:
100.00 to 20000.00 Cubic yard
Logistical requirements for transportable or in situ technologies:
Space (area): 1000 ft2
Water gals. per day
Electrical power: 20 amps
480 volts
Natural gas: ft3 per day
Sewage access: \underline{x} no
"Ballpark" estimate of price range per unit of waste treated:
40.00 to 100.00 per Ton
Price estimates shown above do not always include all indirect costs associated with treatment, such as: excavation, permits and treatment of residuals. For price comparisons, users should make certain that vendors provide estimates based on comparable remediation

Vendor n	ame:	OHM CORPORA	ATION		
Technolo	gy type:	SOIL VAPOR	EXTRACTION		
Factors	that have	significant	effect on uni	t pri	ce (1 is highest):
_1	Initial o	contaminant	concentration	_9	Excavation
_2	Target co	ontaminant o	concentration	_	Waste handling
_5	Waste qua	antity		<u>10</u>	Permitting
_3	Depth of	contaminati	ion		Pretreatment
_4	Depth to	ground wate	er	_	Amount of debris
_6	Residual	quantity		_	Utility/fuel rates
_7	Residual	waste chara	cteristics	_	Labor rates
8	Site prep	paration			
Oth	ers:				
	_				
	 -				
					
			···		
	·				
			·		
	·				
	<u></u>				
			·		
-					

Page No. 13 of 26 09/18/92

5 Constructed

Vendor name: OHM CORPORATION
Technology type: SOIL VAPOR EXTRACTION
Number of full-scale cleanups initiated or completed by this firm using this technology:
6
For equipment manufacturers - estimated or actual number of full-scale cleanups by other firms using this equipment:
6
Major permits obtained for a full-scale system, and issuing authority (e.g., RCRA, TSCA, NPDES, and Clean Air Act).
Permit Type: RCRA Issuing Authority.: Region IV
Permit Type: <u>Air</u> Issuing Authority.: <u>Bay Area Air Quality Mgmt Dist.</u>
Permit Type: Air Issuing Authority.: South Coast Air Quality Mgmt Dist.
Permit Type: Issuing Authority:
Number of full-scale systems:
1 Planned/in design
Under construction

Page No. 14 of 26 09/18/92

PART	2:	Pilot-	and	Full-scale	Tec	chnologies:		
		Detaile	d Ir	formation	and	Performance	Data	(continued)

Vendor name: OHM CORPORATION
Technology type: SOIL VAPOR EXTRACTION
Treatability Study Capabilities (Bench Scale)
Can you conduct bench-scale treatability studies on some types of waste at your location: \underline{X} yes _ no
Number of bench-scale studies conducted to date. Does not include tests on surrogate wastes:
2
Description of bench-scale testing procedures:
Bench top scale treatability studies are conducted in a six inch vertical soil column. Contaminated soil is placed into the column above bead-type ceramic packing. Air passes through the soil column and finally through activated carbon. The effectiveness of the process can be calculated by comparing the air flow rate to the quantity of contaminant adsorbed onto the carbon. Flow rates can also be varied to optimize the treatment process.

SUMMARY OF PERFORMANCE DATA

Vendor name: OHM C	CORPORATION
--------------------	-------------

Technology type: SOIL VAPOR EXTRACTION

Contaminant, contaminant group, or pollutant parameter:

VOCS

Untreated concentration range Mg/kg	Treated concentration range Mg/kg	Equipment Scale
00.000	ND	
to	to	Pilot scale
1000.000	ND	

Waste description:

Soil contaminated with benzene, toluene, MEK, TCA, DCA, TCE

Soil classification:

gravel, sand, sandy loam

Comments:

Treated soil concentration not provided. Untreated off gas concentration was non-detectable.

Page No. 16 of 26

09/18/92

SUMMARY OF PERFORMANCE DATA

Vendor name....: OHM CORPORATION

Technology type: SOIL VAPOR EXTRACTION

Contaminant, contaminant group, or pollutant parameter:

VOCS

Untreated concentration range Mg/kg	Treated concentration range Mg/kg	Equipment Scale	
00.000	ND		
to	to	Full scale	
1000.000	ND		

Waste description:

Soil contaminated with benzene, toluene, MEK, TCA, DCA, TCE

Soil classification:

gravel, sand, sandy loam

Comments:

Treated soil concentration not provided. Untreated off gas concentration was non-detectable.

Page No. 17 of 26

09/18/92

SUMMARY OF PERFORMANCE DATA

Vendor name...: OHM CORPORATION

Technology type: SOIL VAPOR EXTRACTION

Contaminant, contaminant group, or pollutant parameter:

Tetrachloroethylene (PCE)

Untreated concentration range Mg/kg	Treated concentration range Mg/kg	Equipment Scale
00.000	< 20.000	
to	to	Full scale
1000.000	< 20.000	

Waste description:

Soil contaminated with dry cleaning chemicals

Soil classification:

sand, sandy clay

Comments:

Material met on-site disposal criteria. Treated soil concentration was not provided. Untreated off gas concentration was non-detectable. Page No. 18 of 26

09/18/92

SUMMARY OF PERFORMANCE DATA

Vendor name...: OHM CORPORATION

Technology type: SOIL VAPOR EXTRACTION

Contaminant, contaminant group, or pollutant parameter:

Gasoline, BTEX

Untreated concentration range Mg/kg	Treated concentration range Mg/kg	Equipment Scale
00.000	< 10.000	
to	to	Full scale
1200.000	< 10.000	

Waste description:

Gasoline contaminated soil

Soil classification:

sand, sandy clay

Comments:

Material met on-site disposal criteria

Vendor name...: OHM CORPORATION

Technology type: SOIL VAPOR EXTRACTION

Contaminant, contaminant group, or pollutant parameter:

Methylene Chloride

Untreated concentration range Mg/kg	Treated concentration range Mg/kg	Equipment Scale
0.000	ND	
to	to	Full scale
17650.000	ND	

Waste description:

Methylene Chloride contaminated soil at former auto manufacturer

Soil classification:

sandy clay, silty clay

Comments:

Material to meet on-site disposal criteria. Treated soil concentration not provided. Untreated off gas concentration was non-detectable.

Page No. 20 of 26 09/18/92

Vendor n	ame	:	OHM CORPORATION		
Technolo	gy type	:	SOIL VAPOR EXTRACTION		
Site nam	e	:	Hinson Chemical		
City		:	Hinson	State:	<u>sc</u>
Country		:	USA		
Project	type	:	RCRA	_	
Client c	ontact	:			
Affiliat	ion	:	EPA Region IV		
Phone nu	mber	:			
Equipmen					
:	X Benc				
	_ Pilo	t s	scale		
	_ Full	80	cale		
Project	status	(Mc	onth/Year):		
4	Contrac	ted	:		
1	Underwa	Y	:		
	Complet	ed/	To be completed: 5/90		
Waste de	scripti	on:			
	5,000 c	ubi	c yards VOC contaminated soil		

Vendor n	ame	:	OHM CORPORATION		
Technolo	gy type	:	SOIL VAPOR EXTRACTION		
Site nam	ne	:	Hinson Chemical	· · · · · · · · · · · · · · · · · · ·	
City		:	Hinson	State:	sc
Country		:	USA		
Project	type	:	RCRA		
Client c	contact	:			
Affiliat	ion	:	EPA Region IV		
Phone nu	ımber	:	<u> </u>		
Equipmen	it Scale	:			
	_ Benc	h e	scale		
	- Pilo	t s	scale		
	X Full	. sc	ale		
Project	status	(Mc	onth/Year):		
	Contrac	ted	: <u>6/90</u>		
	Underwa	У	: <u>X</u>		
	Complet	ed/	To be completed :		
Waste de	scripti	on:			
	25,000	cub	oic yards VOC contaminated se	oil	

Vendor n	name	:	OHM CORPORATION
Technolo	ogy type	: :	SOIL VAPOR EXTRACTION
Site nam	ne	:	Vorelco
City		:	New Stanton State: PA
Country		:	USA
Project	type	:	UST
Client o	contact	:	
Affiliat	ion	:	PADER
Phone nu	umber	:	(
Equipmen	nt Scale	:	
	_ Bend	h e	scale
	_ Pilo	ot s	scale
	X Full	. 80	cale
Project	status	(Mc	onth/Year):
	Contrac	ted	: <u>6/91</u>
	Underwa	ιγ	: <u>X</u>
	Complet	ed/	To be completed :
Waste de	scripti	.on:	
	2,000 0	ubi	c yards methylene chloride contaminated soil

Vendor name :	OHM CORPORATION
Technology type:	SOIL VAPOR EXTRACTION
Site name :	
City :	State:
Country :	USA
Project type :	UST
Client contact :	Confidential
Affiliation :	
Phone number :	() -
Equipment Scale:	
_ Bench	scale
_ Pilot	scale
X Full s	cale
Project status (M	onth/Year):
Contracte	d :
Underway	:
Completed	/To be completed : 5/91
Waste description	•
300 cubic	yards gasoline contaminated soil

Vendor n	ame :	OHM CORPORATION
Technolo	gy type:	SOIL VAPOR EXTRACTION
Site name	e :	
City	:	State:
Country	:	USA
Project	type :	UST
_		
Client co	ontact :	Confidential
Affiliat.	ion :	
Phone nu	mber :	(
Equipment	t Scale:	
	Bench	scale
	Pilot	scale
3	X Full s	scale
Project	status (1	<pre>ionth/Year):</pre>
•	Contracte	ed :
τ	Underway	:
(Completed	/To be completed : 6/90
Waste de:	scription	1:
!	500 cubic	yards gasoline contaminated soil

AVAILABLE REFERENCES

Vendor name : OHM CORPORATION
Technology type: SOIL VAPOR EXTRACTION
Reference: Hutzler, N.J., et al., "Review of Soil Vapor
Extraction System Technology" Presented at "Soil Vapor Extraction
Technology for UST Sites Workshop" June 27-28 1989
Source:
Name/Organization: USEPA Risk Reduction Engineering Lab
Address:
Address:
City : Edison
State : NJ
<u></u>
Zip :

AVAILABLE REFERENCES

Vendor na	me : OHM CORPORATION
Technolog	y type: SOIL VAPOR EXTRACTION
Reference	: Johnson, P.C., et al., "A Practical Approach to the
	operation, and Monitoring of In Situ Soil Venting Systems"
Source:	
Name/Orga	nization: National Water Well Association
Address:	4375 Riverside Drive
City :	Dayton
State :	<u>он</u>
Zip :	43107
Phone num	ber: () -

UNITED STATES ENVIROMENTAL PROTECTION AGENCY VENDOR INFORMATION SYSTEM FOR INNOVATIVE TREATMENT TECHNOLOGIES (VISITT)

Part 1: General Information and Technology Overview

Date submitted: 02/27/92 Developer/Vendor name: TERRA VAC Street address: 356 Fortaleza Street City: San Juan State: PR Zip: 00901 Country: USA Contact name: JOSEPH A. PEZZULLO, P.E. and title...: VICE PRESIDENT Contact phone: (609) 530-0003 Fax Number: (609) 530-1084 Telex number: () -Standard technology type: SOIL VAPOR EXTRACTION Technology name assigned by vendor (e.g., trade name): Technology is being or has been tested in EPA SITE Program ? Yes Literature on technology available on request ? Yes

Part 1: General Information and Technology Overview (continued)
Vendor name: TERRA VAC
Technology type: SOIL VAPOR EXTRACTION
General description of technology:
Vacuum extraction induces a negative pressure gradient within the sometrix through extraction wells. As the vacuum propogates through the subsurface, the contaminants vaporize as air and contaminant vapors migrate toward the extraction well(s) where they are drawn to the surface for treatment.
The process recovers all phases of contamination: 1) vapor; 2) liquid; 3) dissolved; 4) adsorbed. Liquid water is generally extracted along with the contaminated vapor. The two-phase flow of contaminated air and water flows to a vapor/liquid separator where the contaminated water is removed. The contaminated air stream is then treated via carbon adsorption or catalytic oxidation. The contaminated water from the separator is treated by any one of many water treatment technologies.
As contaminant vapors are removed from the soil's pore volume, the other three phases (liquid, dissolved, adsorbed) vaporize in place, thereby reducing the aggregate soil concentration. Hence, this process is continuous, as the contaminants are constantly driven to the vapor state within the soil matrix.

Page No. 3 of 31 09/18/92

Part 1: G	General	Information	and	Technology	Overview ((continued)
-----------	---------	-------------	-----	------------	------------	-------------

Vendor name:	TERRA VAC
Technology type:	SOIL VAPOR EXTRACTION

Technology highlights:

There are several key advantages to the vacuum extraction process which revolve around the flexibility of its application. It can be performed in-situ (e.g., underneath buildings, roads, parking lots, or other structures), or ex-situ in soil piles.

Vacuum extraction can be combined with groundwater extraction from the same wells. This synergistic process provides a cost-effective means of recovering contaminants from the vadose zone and groundwater without having to install two separate systems.

It can be combined with hot air injection, steam injection, electric soil heating or air sparging to enhance the volatility of the contaminants. Also, the vast amounts of air being purged through the soils has shown to enhance the natural biodegradation of certain contaminants.

Vacuum extraction is a proven technology that works in virtually every type of soil throughout a wide range of permeabilities. It has also been effective in fractured bedrock. It can be applied to volatile and semi-volatile contaminants. Furthermore, once operational parameters have been defined and set, the treatment can continue insupervised with scheduled maintenance and system monitoring.

Page No. 4 of 31 09/18/92

Part 1: General Information and Technology Overview (continued)

Vendor name...: TERRA VAC

Technology type: SOIL VAPOR EXTRACTION

Technology status:

- Bench scale or emerging. Technology shown to be feasible through the use of bench-top equipment in the laboratory. Available data cannot be used to scale up to full scale in the absence of additional pilot-scale or full-scale experience for similar applications.
- Pilot scale. Available equipment is of sufficient size to verify technology feasibility or establish the design and operating conditions for a full-scale system. However, it is not of the size typically used for a cleanup.
- X Full scale. Available equipment is sized and commercially available for actual site remediation.

Potential or actual waste/media treated:

- X Soil
- X Sludge
- Solid
- _ Natural sediment
- _ Ground water in situ

Part 1: General Information and Technology Overview (continued)

Ve	ndor name: TERRA VAC	
Te	chnology type: SOIL VAPOR EXTRAC	CTION
	tential or actual contaminants ar is technology:	nd contaminant groups treated by
	Organic	Inorganic
<u>x</u>	Halogenated volatiles	_ Heavy metals
<u>x</u>	Halogenated semivolatiles	_ Nonmetallic toxic elements
<u>x</u>	Nonhalogenated volatiles	_ Radioactive metals
<u>x</u>	Nonhalogenated semivolatiles	_ Asbestos
_	Organic pesticides/herbicides	_ Inorganic cyanides
_	Dioxins/furans	_ Inorganic corrosives
_	PCBs	
<u>x</u>	Polynuclear aromatics (PNAs)	Miscellaneous
<u>x</u>	Solvents	_ Explosives/propellents
x	Benzene-toluene-ethylbenzene- xylene (BTEX)	<pre>Organometallic pesticides/ herbicides</pre>
_	Organic cyanide	•
_	Organic corrosives	
Ot!	ners:	
_		
	······································	2,2,0,5
	, -, - We	
_		
		

Page No. 6 of 31 09/18/92

Part 1: General Information and Technology Overview (continued)

Vendor name...: TERRA VAC

Te	chnology type: SOIL VAPOR EXT	RAC	TION
	neral sources or types of indu at the technology can address:	str	ial waste or contaminated sites
_	Agriculture	_	Paint/ink formulation
_	Battery recycling/disposal	_	Pesticide manufacturing/use
_	Chloro-alkali manufacturing	<u>x</u>	Petroleum refining and reuse
_	Coal gasification	_	Photographic products
_	Dry cleaners	x	Plastics manufacturing
<u>x</u>	Electroplating	_	Pulp and paper industry
_	Herbicide manufacturing/use	<u>x</u>	Other organic chemical manufacturing
x	Industrial landfills	_	Other inorganic chemical manufacturing
_	Inorganic/organic pigments	<u>x</u>	Semiconductor manufacturing
<u>x</u>	Machine shops	_	Rubber manufacturing
_	Metal ore mining and smelting	<u>x</u>	Wood preserving
x	Municipal Landfill	_	Uranium mining
_	Munitions Manufacturing		
Ot1	ners:		
			

Page No. 7 of 31 09/18/92

Part 1: General Information and Technology Overview (continued)

Vendor name...: TERRA VAC

Technology type: SOIL VAPOR EXTRACTION

Technology limitations:

This technology is not applicable where the Henry's constant of the contaminant is less than 0.0001.

Technology status comments:

Terra Vac is in the process of testing the effectiveness of vacuum extraction in combination with other treatment technologies such as bioremediation. Also, our research includes testing the effectiveness of vacuum extraction to remove mercury contamination.

Ve	ndor name: TERRA VAC	
Te	chnology type: SOIL VAPOR EXTRACTION	
Ve	ndor services:	
<u>x</u>	Equipment manufacture	
_	Subcontractor for cleanup services	
<u>x</u>		
<u>x</u>	Prime contractor for full-service remediation	
Pi:	lot-scale Equipment/Capabilities	
	Major unit processes:	
	Major components include extraction wells, manifold piping, vapor/liquid separator, activated carbon units or catalytic oxidizer, vacuum unit, manifold piping and instrumentation. S applications include groundwater pumps and controls, telemetry circuits and auto-sampling devices.	ome
	· · · · · · · · · · · · · · · · · · ·	

Page No. 9 of 31 09/18/92

PART 2: Pilot- and Full-scale Technologies:
Detailed Information and Performance Data (continued)

Vendor name:	TERRA VAC
Technology type:	SOIL VAPOR EXTRACTION
Number of pilot-	scale systems:
15 Pla	anned/in_design
	der construction
	nstructed
Dilat anala fasi	
Pilot-scale faci	
_ Transpo	readle
_ Fixed	
<u>X</u> In situ	1
Pilot capacity ra	ange per hour. Capacity of batch processes is prorated.
	to <u>N/A</u>
Can you conduct pat your location	pilot-scale treatability studies on some type of waste
At a contaminated	i site? Yes
Quantity of waste	e needed for pilot-scale treatability study:
	to <u>N/A</u>
	scale studies conducted on wastes from different sources not include tests on surrogate wastes.

250

Page No. 10 of 31 09/18/92

Vendo	r name	e:	TERRA VAC
Techno	ology	type:	SOIL VAPOR EXTRACTION
Full-	scale	Equipme	ent/Capabilities
1	Major	unit p	rocesses:
6	vapor oxidi: applio	/liquid zer, vac cations	ents include extraction wells, manifold piping, separator, activated carbon units or catalytic cuum unit, manifold piping and instrumentation. Some include groundwater pumps and controls, telemetry auto-sampling devices.
-			
	·		
-		-	
•			
-			,
-			
-			
-		,	
-			
-		·	
-			
-			
-			

Page No. 11 of 31 09/18/92

activities.

Vendor name: TERRA VAC
Technology type: SOIL VAPOR EXTRACTION
Full-scale facility is:
_ Transportable _ Fixed X In situ
Full capacity range per hour:
to
Logistical requirements for transportable or in situ technologies:
Space (area): 200 ft2
Water gals. per day
Electrical power: 100 amps
440 volts
Natural gas: ft3 per day
Sewage access: _ yes \underline{x} no
"Ballpark" estimate of price range per unit of waste treated:
10.00 to 100.00 per Ton
Price estimates shown above do not always include all indirect costs associated with treatment, such as: excavation, permits and
treatment of residuals. For price comparisons, users should make
certain that vendors provide estimates based on comparable remediation

Vendor n	ame:	TERRA VAC		
Technolo	gy type:	SOIL VAPOR EXTRACT:	ION	
Factors	that have	significant effect	on unit pri	ce (1 is highest):
_4	Initial o	contaminant concent:	ration	Excavation
_1	Target co	ontaminant concentra	ation	Waste handling
_5	Waste qua	antity	_8	Permitting
_3	Depth of	contamination	_	Pretreatment
_2	Depth to	ground water	_	Amount of debris
_6	Residual	quantity	_9	Utility/fuel rates
_7	Residual	waste characterist	ics <u>10</u>	Labor rates
	Site prep	paration		
Oth	ers:			
			=141	
			<u></u>	
				·
			<u>, </u>	**************************************
				

Page No. 13 of 31 09/18/92

Vendor	name:	TERRA VAC	
Techno	ology type:	SOIL VAPOR EXTRACTION	
	Number of full states to	ll-scale cleanups initiated or completed by the echnology:	is firm
_	200		
F		t manufacturers - estimated or actual number of other firms using this equipment:	f full-scale
-		· *	
		s obtained for a full-scale system, and issuing .g., RCRA, TSCA, NPDES, and Clean Air Act).	3
F	Permit Type Ssuing Autho	ority.:	
F	Permit Type	ority.:	
P	Permit Type	ority.:	
P	Permit Type	ority.:	
N	umber of ful	ll-scale systems:	
_	30 Planne	ed/in design	
_	50 Under	construction	
	100 Consti	ructed	

Page No. 14 of 31 09/18/92

PART	2:	Pilot- ar	nd Full-scale	Tec	chnologies:		
		Detailed	Information	and	Performance	Data	(continued)

Vendor name: TERRA VAC
Technology type: SOIL VAPOR EXTRACTION
Treatability Study Capabilities (Bench Scale)
Can you conduct bench-scale treatability studies on some types of waste at your location: \underline{X} yes _ no
Number of bench-scale studies conducted to date. Does not include tests on surrogate wastes:
10
Description of bench-scale testing procedures:
Bench-scale testing involves collecting a sample of the contaminated soil in cores, buckets or drums. These vessels are then connected to similar apparatus as described in 23a, only smaller. The vacuum system is started, and analytical sampling of the soil and extracted vapors throughout the test is used to evaluate the effectiveness of the treatment process.
<u> </u>

Vendor name...: TERRA VAC

Technology type: SOIL VAPOR EXTRACTION

Contaminant, contaminant group, or pollutant parameter:

BTEX

Untreated concentration range Mg/kg	Treated concentration range Mg/kg	Equipment Scale
10.000	0.001	
to	to	Full scale
3000.000	0.005	

Waste description:

Gasoline station, leaking UST

Soil classification:

Sand

Comments:

Recovered 50,000 lbs of gasoline in 6 months.

Vendor name...: TERRA VAC

Technology type: SOIL VAPOR EXTRACTION

Contaminant, contaminant group, or pollutant parameter:

Trichloroethylene (TCE), Tetrachloroethylene (PCE)

Untreated concentration range Mg/kg	Treated concentration range Mg/kg	Equipment Scale
5.000	0.001	
to	to	Full scale
5000.000	0.005	

Waste description:

Superfund Region IV, VOC-contaminated soils

Soil classification:

Sand/silt

Comments:

Recovered 60,000 lbs, initial rate of 4,440 lbs/day.

Vendor name...: TERRA VAC

Technology type: SOIL VAPOR EXTRACTION

Contaminant, contaminant group, or pollutant parameter:

Carbon Tetrachloride

Untreated concentration range Mg/kg	Treated concentration range Mg/kg	Equipment Scale
3.000	0.000	
to	to	Full scale
600.000	0.001	

Waste description:

Superfund Region II, contaminated clay and rock.

Soil classification:

Clay and rock

Comments:

First-ever application of technology at a Superfund site. Reached non-detectable level in 2.5 years. Completed.

Vendor name....: TERRA VAC

Technology type: SOIL VAPOR EXTRACTION

Contaminant, contaminant group, or pollutant parameter:

Tricresyl Phosphate (TCP)

Untreated concentration range Mg/kg	Treated concentration range Mg/kg	Equipment Scale
10.000	N/A	
to	to	Full scale
200000.000	N/A	

Waste description:

Superfund Region III, semi-volatile contamined soils and groundwater.

Soil classification:

Clay and bedrock.

Comments:

On-going project. Recovered 150,000 lbs to date, including DNAPL. Dual extraction of soils and groundwater.

09/18/92

SUMMARY OF PERFORMANCE DATA

Vendor name....: TERRA VAC

Technology type: SOIL VAPOR EXTRACTION

Contaminant, contaminant group, or pollutant parameter:

VOCS (Acetone, Toluene, MeCl)

Untreated concentration range Mg/kg 3.000	Treated concentration range Mg/kg	Equipment Scale
3.000	N/A	
to	to	Full scale
400.000	N/A	

Waste description:

Tank farm leakage. Contaminated backfill.

Soil classification:

Sand and gravel.

Comments:

Achieved non-detectable levels within 60 days. Closure within 90 days thereafter.

Vendor name...: TERRA VAC

Technology type: SOIL VAPOR EXTRACTION

Contaminant, contaminant group, or pollutant parameter:

Dichlorobenzene (DCB)

Untreated concentration range Mg/kg	Treated concentration range Mg/kg	Equipment Scale
10.000	N/A	
to 200000.000	to N/A	Full scale

Waste description:

Superfund Region III, semi-volatile contamined soils and groundwater.

Soil classification:

Clay and bedrock.

Comments:

On-going project. Recovered 150,000 lbs to date, including DNAPL. Dual extraction of soils and groundwater.

Vendor name...: TERRA VAC

Technology type: SOIL VAPOR EXTRACTION

Contaminant, contaminant group, or pollutant parameter:

Xylene

Untreated concentration range Mg/kg	Treated concentration range Mg/kg	Equipment Scale
10.000	N/A	
to	to	Full scale
200000.000	N/A	

Waste description:

Superfund Region III, semi-volatile contamined soils and groundwater.

Soil classification:

Clay and bedrock.

Comments:

On-going project. Recovered 150,000 lbs to date, including DNAPL. Dual extraction of soils and groundwater.

Vendor nam	ne	:	TERRA VAC			<u></u>
Technology	y type	:	SOIL VAPOR EXTR	ACTION		
Site name		:	Groveland Wells			*
City		:	Groveland	· · · · · · · · · · · · · · · · · · ·	State:	<u>ma</u>
Country		:	USA			
Project ty	/pe	:	SUPERFUND US EPI	A SITE DEMO	_	
Client cor	ntact	:	Mary Stinson			
Affiliatio	on	:	US EPA - RREL			
Phone numb	er	:	(908) 321-6683			
Equipment						
_	Benc	h s	cale			
<u>x</u>	Pilo	t s	cale			
_	Full	sc	ale			
Project st	atus	(Mo	nth/Year):			
Co	ontrac	ted		: <u>12/87</u>		
បក	nderwa	Y		:		
Co	mplet	ed/	To be completed	: 07/89		
Waste desc	ripti	on:				
Le	aking	US	T, TCE-contamina	ated soils ar	nd ground	water

Vendor name :	TERRA VAC
Technology type:	SOIL VAPOR EXTRACTION
Site name :	Union 76 Gasoline Station
City :	Belleview State: FL
Country :	USA
Project type :	FLORIDA DEPT. OF ENVIR. REGUL.
Client contact :	Joseph Applegate, John Gentry
Affiliation :	Florida DER
Phone number :	() -
Equipment Scale:	ecale
_ Bench Pilot	
_ YIIOC X Full s	
<u>x</u>	
Project status (M	ionth/Year):
Contracte	: <u>09/88</u>
Underway	:
Completed	/To be completed :
Waste description	:
Gasoline-	contaminated soils, 10,000 gallons

Vendor 1	name	:	TERRA VAC				
Technol	ogy type	:	SOIL VAPOR EXTRACT	ION			
Site na	me	:	Tysons Dump			*	
City		:	King of Prussia	s	tate:	<u>PA</u>	
Country		:	USA				
Project	type	:	SUPERFUND/PRIVATE	LEAD	-		
Client (contact	:	Karline Tierney				
Affilia	tion	:	Ciba-Geigy				
Phone n	umber	:	(914) 479-5000				
Equipmen	nt Scale	:					
	Benc	h s	cale				
	_ Pilo	t s	cale				
	X Full	sc	ale				
Project	status	(Mo	nth/Year):				
	Contrac	ted	•	01/88			
	Underwa	Y	:	<u>x</u>			
	Complete	ed/	To be completed:				
Waste de	escripti	on:					
	Benzene	, t	oluene, xylene, tr	ichloropropa	ne in s	soil and	DNAPL

Vendor name	:	TERRA VAC
Technology type	e:	SOIL VAPOR EXTRACTION
Site name	:	Upjohn Facility *
City	:	Barcelonetta State: PR
Country	:	USA
Project type	:	SUPERFUND/PRIVATE LEAD
Client contact	:	
Affiliation	:	
Phone number	:	(
Equipment Scale	∍:	
_ Bend	ch s	scale
- Pilo	ot 1	scale
X Full	Lsc	cale
Project status	(Mo	onth/Year):
Contrac	cted	: <u>05/84</u>
Underwa	ıy	:
Complet	.ed,	To be completed: $11/86$
Waste descripti	ion	.
CC14-cc	onta	aminated clay and bedrock

Client contact: Joseph Danko Affiliation: CH2M Hill Phone number: (503) 752-0276 Equipment Scale: _ Bench scale _ Pilot scale _ Pilot scale X Full scale Y Full scale Contracted: 08/87 Underway: X Completed/To be completed:	Vendor 1	name	:	TERRA VAC
City : Battle Creek, State: MI Country : USA Project type : SUPERFUND/EPA LEAD Client contact : Joseph Danko Affiliation : CH2M Hill Phone number : (503) 752-0276 Equipment Scale: _ Bench scale _ Pilot scale _ Pilot scale X Full scale Y Full scale Contracted : 08/87 Underway : X Completed/To be completed : Waste description: PCE, TCE, MEK, CC14, MeC1, MEK, MIBK, BTEX-contaminated sand and	Technolo	ogy type	:	SOIL VAPOR EXTRACTION
City : Battle Creek, State: MI Country : USA Project type : SUPERFUND/EPA LEAD Client contact : Joseph Danko Affiliation : CH2M Hill Phone number : (503) 752-0276 Equipment Scale: _ Bench scale _ Pilot scale _ Pilot scale X Full scale Y Full scale Contracted : 08/87 Underway : X Completed/To be completed : Waste description: PCE, TCE, MEK, CC14, MeC1, MEK, MIBK, BTEX-contaminated sand and				
Country : USA Project type : SUPERFUND/EPA LEAD Client contact : Joseph Danko Affiliation : CH2M Hill Phone number : (503) 752-0276 Equipment Scale: _ Bench scale _ Pilot scale _ Pilot scale X Full scale Project status (Month/Year): Contracted : 08/87 Underway : X Completed/To be completed : Waste description: PCE, TCE, MEK, CCl4, MeCl, MEK, MIBK, BTEX-contaminated sand and	Site nar	ne	:	Verona Well Field *
Project type : SUPERFUND/EPA LEAD Client contact : Joseph Danko Affiliation : CH2M Hill Phone number : (503) 752-0276 Equipment Scale: _ Bench scale _ Pilot scale _ Pilot scale X Full scale Y Full scale Contracted : 08/87 Underway : X Completed/To be completed : Waste description: PCE, TCE, MEK, CC14, MeC1, MEK, MIBK, BTEX-contaminated sand and	City		:	Battle Creek, State: MI
Client contact: Joseph Danko Affiliation: CH2M Hill Phone number: (503) 752-0276 Equipment Scale: Bench scale Pilot scale Pilot scale X Full scale Y Full scale Contracted: 08/87 Underway: X Completed/To be completed: Waste description: PCE, TCE, MEK, CC14, MeC1, MEK, MIBK, BTEX-contaminated sand and	Country		:	USA
Affiliation : CH2M Hill Phone number : (503) 752-0276 Equipment Scale: Bench scale Pilot scale Yell scale X Full scale Project status (Month/Year): Contracted : 08/87 Underway : X Completed/To be completed : Waste description: PCE, TCE, MEK, CC14, MeC1, MEK, MIBK, BTEX-contaminated sand and	Project	type	:	SUPERFUND/EPA LEAD
Phone number : (503) 752-0276 Equipment Scale: Bench scale Pilot scale X Full scale Project status (Month/Year): Contracted : 08/87 Underway : X Completed/To be completed : Waste description: PCE, TCE, MEK, CC14, MeC1, MEK, MIBK, BTEX-contaminated sand and	Client o	contact	:	Joseph Danko
Equipment Scale: Bench scale Pilot scale X Full scale Project status (Month/Year): Contracted : 08/87 Underway : X Completed/To be completed: Waste description: PCE, TCE, MEK, CC14, MeC1, MEK, MIBK, BTEX-contaminated sand and	Affiliat	ion	:	CH2M Hill
Bench scale Pilot scale X Full scale Project status (Month/Year): Contracted : 08/87 Underway : X Completed/To be completed: Waste description: PCE, TCE, MEK, CCl4, MeCl, MEK, MIBK, BTEX-contaminated sand and	Phone nu	ımber	:	(503) 752-0276
Pilot scale X Full scale Project status (Month/Year): Contracted : 08/87 Underway : X Completed/To be completed : Waste description: PCE, TCE, MEK, CC14, MeC1, MEK, MIBK, BTEX-contaminated sand and	Equipmen	nt Scale):	
<pre>X Full scale Project status (Month/Year):</pre>		_ Bend	h s	scale
Project status (Month/Year): Contracted : 08/87 Underway : X Completed/To be completed: Waste description: PCE, TCE, MEK, CC14, MeC1, MEK, MIBK, BTEX-contaminated sand and		- Pilo	t e	scale
Contracted : 08/87 Underway : X Completed/To be completed : Waste description: PCE, TCE, MEK, CC14, MeC1, MEK, MIBK, BTEX-contaminated sand and		X Full	. 80	cale
Underway : X Completed/To be completed : Waste description: PCE, TCE, MEK, CC14, MeC1, MEK, MIBK, BTEX-contaminated sand and	Project	status	(Mc	onth/Year):
Completed/To be completed: Waste description: PCE, TCE, MEK, CC14, MeC1, MEK, MIBK, BTEX-contaminated sand and		Contrac	ted	: <u>08/87</u>
Waste description: PCE, TCE, MEK, CC14, MeC1, MEK, MIBK, BTEX-contaminated sand and		Underwa	Y	: <u>X</u>
PCE, TCE, MEK, CC14, MeC1, MEK, MIBK, BTEX-contaminated sand and		Complet	.ed/	To be completed :
	Waste de	scripti	on:	
			E,	MEK, CC14, MeC1, MEK, MIBK, BTEX-contaminated sand and

Phone number: (201) 321-6683

AVAILABLE REFERENCES

Vendor	na	me : <u>;</u>	TERRA VAC
Techno	log	y type: §	SOIL VAPOR EXTRACTION
			Program Demonstration Test, Terra Vac In-Situ System, Groveland, MA, Report 540-5-89-003a
Source	:		
Name/O	rga	nization:	Mary Stinson/U.S. EPA - ORD
Addres	s :	Releases	Control Branch
		MS-104	
City	:	Edison,	
State	:	<u>NJ</u>	
Zip	:	08837	

AVAILABLE REFERENCES

Vendor name : TERRA VAC	
Technology type: SOIL VAPOR EXTRACTION	
Reference: U.S. Patent and Trademark Office, Number Re. 33,102	
Source:	
Name/Organization: U. S. Patent and Trademark Office	
Address: 2021 Jefferson Davis Highway	
City : Arlington,	4
State : <u>VA</u>	

Phone number: (703) 557-4636

Zip : 22202

Page No. 29 of 31 09/18/92

Phone number: (412) 232-3444

AVAILABLE REFERENCES

Vendor	na	me : TERRA VAC	
Techno	log	y type: SOIL VAPOR EXTRACTION	
Refere	nce	e: Malot, James J., 1988, Clean Up of Soils Contamin	ated
with 1	Hyd	rocarbons at a Gasoline Service Station	
Source	:		
Name/Organization: Air and Waste Management Association			
Addres	9:	3 Gateway Center, Publications Dept. 4th Floor	
		(Paper No. 88-3.7)	
City	:	Pittsburgh,	
State	:	<u>PA</u>	
Zip	:	15222	

Page No. 30 of 31 09/18/92

Phone number: (301) 982-9500

AVAILABLE REFERENCES

Vendor	na	me :	TERRA VAC			
Techno	Technology type: SOIL VAPOR EXTRACTION					
Refere	nce	: Fue	rst, David, et al., 1991, Vacuum Extraction of			
Volati	le	and Semi	-Volatile Compounds at a Superfund Site			
Source	:					
Name/O	rga	nization	: HMCRI Conference, Houston, TX, July			
Address:		7237 Ha	nover Parkway			
City	:	Greenbe	lt			
State	:	MD				
		_				
Zip	:	2077036	02			

Phone number: (301) 982-9500

AVAILABLE REFERENCES

Vendor	naı	me :	TERRA VAC
Techno	109	y type:	SOIL VAPOR EXTRACTION
Refere	nce	: Pezz	cullo, Joseph A., Peterson, R. Michael, Malot,
James .	J.,	1990, Fu	ll Scale Remediation at a Superfund Site Using
In-Sit	u V	acuum Ext	raction and On-Site Regeneration, Case Study-Phase I
	rgai		HMCRI Superfund Conf., Wash., DC, Nov.
City	:	Greenbel	t,
State	:	<u>MD</u>	
Zip	:	20770360	<u>2</u>

VISITT INFORMATION FOR BIOLOGICALLY ENHANCED ISVE

UNITED STATES ENVIROMENTAL PROTECTION AGENCY VENDOR INFORMATION SYSTEM FOR INNOVATIVE TREATMENT TECHNOLOGIES (VISITT)

Part 1: General Information and Technology Overview

Date submitted: 10/07/91
Developer/Vendor name: BATTELLE MEMORIAL INSTITUTE
Street address: Battelle Blvd., Box 999
City: Richland State: WA Zip: 99352
Country: USA
Contact name: DAN ANDERSON , ROB HINCHEE and title: BATTELLE PNL , BATTELLE - COLUMBUS
Contact phone: (509) 376-9428 Fax Number: (509) 376-1867
Telex number: () -
Standard technology type:
BIOVENTING
Technology name assigned by vendor (e.g., trade name):
Technology is being or has been tested in EPA SITE Program ? No
Literature on technology available on request ? Yes

Vendor name: BATTELLE MEMORIAL INSTITUTE	
Technology type: BIOVENTING	
General description of technology:	
Battelle - Columbus has developed and is currently deploying a vacuum-enhanced in-situ bioremediation (bioventing) technology w PNL to remediate jet fuel contaminated sites. Bioventing technoremoves volatile organic compounds (VOCs) from subsurface soils simultaneously stimulating aerobic biodegradation of semi-volaticompounds by controlling mass tranfer and availability of oxygen	logy while le

Page No. 3 of 7 09/18/92

Vendor name: BATTELLE MEMORIAL INSTITUTE	
Technology type: BIOVENTING	
Technology highlights:	
*Enhancement to vapor extraction for volatile and semi-volatile components.	
*Field treatability (in-situ) capability to reduce cost of treatability/feasibility studies.	
	

Page No. 4 of 7 09/18/92

Part 1: General Information and Technology Overview (continued)

Vendor name:	BATTELLE MEMORIAL INSTITUTE
Technology type:	BIOVENTING

Technology status:

- Bench scale or emerging. Technology shown to be feasible through the use of bench-top equipment in the laboratory. Available data cannot be used to scale up to full scale in the absence of additional pilot-scale or full-scale experience for similar applications.
- X Pilot scale. Available equipment is of sufficient size to verify technology feasibility or establish the design and operating conditions for a full-scale system. However, it is not of the size typically used for a cleanup.
- _ Full scale. Available equipment is sized and commercially available for actual site remediation.

Potential or actual waste/media treated:

- X Soil
- Sludge
- Solid
- X Natural sediment
- Ground water in situ

vendor name: BATTELLE MEMORIA	AL INSTITUTE
Technology type: BIOVENTING	
Potential or actual contaminants a this technology:	and contaminant groups treated by
Organic	Inorganic
_ Halogenated volatiles	_ Heavy metals
_ Halogenated semivolatiles	_ Nonmetallic toxic elements
X Nonhalogenated volatiles	_ Radioactive metals
X Nonhalogenated semivolatiles	Asbestos
_ Organic pesticides/herbicides	_ Inorganic cyanides
Dioxins/furans	_ Inorganic corrosives
PCBs	
Polynuclear aromatics (PNAs)	Miscellaneous
X Solvents	_ Explosives/propellents
Benzene-toluene-ethylbenzene- xylene (BTEX)	<pre>Organometallic pesticides/ herbicides</pre>
_ Organic cyanide	
_ Organic corrosives	
Others: Diesel fuel, jet fuel, other petro	leum hydrocarbons.

Vendor name: BATTELLE MEMORIAL	INSTITUTE			
Technology type: BIOVENTING				
General sources or types of industrial waste or contaminated sites that the technology can address:				
X Agriculture _	Paint/ink formulation			
_ Battery recycling/disposal _	Pesticide manufacturing/use			
_ Chloro-alkali manufacturing \underline{X}	Petroleum refining and reuse			
_ Coal gasification _	Photographic products			
_ Dry cleaners _	Plastics manufacturing			
_ Electroplating _	Pulp and paper industry			
_ Herbicide manufacturing/use _	Other organic chemical manufacturing			
_ Industrial landfills _	Other inorganic chemical manufacturing			
_ Inorganic/organic pigments _	Semiconductor manufacturing			
_ Machine shops _	Rubber manufacturing			
_ Metal ore mining and smelting _	Wood preserving			
_ Municipal Landfill _	Uranium mining			
_ Munitions Manufacturing				
Others:				
UST sites				

Page No. 7 of 7 09/18/92

Part 1: General Information and Technology Overview (continued)

Vendor name...: BATTELLE MEMORIAL INSTITUTE

Technology type: BIOVENTING

Technology limitations:

Technology is currently applicable to volatile and semi-volatile organic contaminants that can be aerobically biodegraded. Limited applicability to co-metabolically degraded contaminants such as TCE. Performance is affected by the number and diversity of indigenous microorganisms, pH, temperature, and soil moisture.

Technology status comments:

Battelle has demonstrated the technology in the field at contaminated sites and is currently involved in several field-scale demonstrations.

Page No. 1 of 16 09/18/92

UNITED STATES ENVIROMENTAL PROTECTION AGENCY VENDOR INFORMATION SYSTEM FOR INNOVATIVE TREATMENT TECHNOLOGIES (VISITT)

Part 1: General Information and Technology Overview

Date submitted: 09/23/91	
Developer/Vendor name: GROUNDWATER TECHNOLOGY, INC.	_
Street address: 100 River Ridge Drive	
City: Norwood State: MA Zip: 02062	
Country: USA	
Contact name: Richard Brown, Ph.D.	
and title: Director, Geochemical Bioremediation Tech	
Contact phone: (609) 587-0300 Fax Number: ()	<u>-</u>
Telex number: () -	
Standard technology type:	
BIOVENTING	
Technology name assigned by vendor (e.g., trade name):	
Technology is being or has been tested in EPA SITE Program ?	No
Literature on technology available on request ?	Yes

Dart	1.	Conoral	Information	and	Technology	Overview	/continued
Part	1:	General	information	and	Lecunoroda	Overview	(continued)

Vendor name	.: GROUNDWATER TECHNOLOGY, INC.
Technology typ	e: BIOVENTING
General descri	ption of technology:
compounds from augmentation. VOCs through electric compourprocesses. The contaminated seprocess between	nhanced volatilization and in the biodegradation of nds through the acceleration of indigenous microbial e key to the process is the effective contact of oil with an induced air stream. The partitioning of the n physical removal and biodegradation is a function of ration and the relatively biodegradability of the
and allows for	ical removal with biodegradation accelerates remediation the achievement of lower closure levels. The system both in situ and ex situ.
<u> </u>	

Vendor r	ame.	:	GROUNDWATE	R TECHN	OLOGY,	INC.		
Technolo	ogy t	:ype:	BIOVENTING	}			 	
Technolo	ogy 1	nighli	ghts:					
that car demonstr Bioaugme and is a	n be rated ent s also	effectieffe deffe soil version of the second faste	vapor extratively treative in trapor is effortant convictions of the conviction of the convictions of the convictions of the conviction of	ted threating fective ventiona	ough var chloring in treat l techno	por extra ated hydr ting chlo clogies	action. rocarbon prinated because	It has been s. organics it combines
		_			· v	<u>.</u>		
							· ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
								
			 					
				"				
<u> · · · · · · · · · · · · · · · · · ·</u>				· · · · · · · · · · · · · · · · · · · 				
			<u>-</u>					
			· · · · · · · · · · · · · · · · · · ·					

Page No. 4 of 16 09/18/92

Part 1: General Information and Technology Overview (continued)

Vendor name:	GROUNDWATER	TECHNOLOGY,	INC.	
Technology type:	BIOVENTING			

Technology status:

- Bench scale or emerging. Technology shown to be feasible through the use of bench-top equipment in the laboratory. Available data cannot be used to scale up to full scale in the absence of additional pilot-scale or full-scale experience for similar applications.
- Pilot scale. Available equipment is of sufficient size to verify technology feasibility or establish the design and operating conditions for a full-scale system. However, it is not of the size typically used for a cleanup.
- \underline{X} Full scale. Available equipment is sized and commercially available for actual site remediation.

Potential or actual waste/media treated:

- X Soil
- X Sludge
- Solid
- _ Natural sediment
- Ground water in situ

۷e	ndor name: GROUNDWATER TECHN	OLO	GY, INC.						
Te	chnology type: BIOVENTING								
	Potential or actual contaminants and contaminant groups treated by this technology:								
	Organic		Inorganic						
_	Halogenated volatiles	_	Heavy metals						
_	Halogenated semivolatiles	_	Nonmetallic toxic elements						
<u>x</u>	Nonhalogenated volatiles	_	Radioactive metals						
<u>x</u>	Nonhalogenated semivolatiles	_	Asbestos						
_	Organic pesticides/herbicides	-	Inorganic cyanides						
_	Dioxins/furans	_	Inorganic corrosives						
_	PCBs								
<u>x</u>	Polynuclear aromatics (PNAs)		Miscellaneous						
<u>x</u>	Solvents	<u>x</u>	Explosives/propellents						
<u>x</u>	Benzene-toluene-ethylbenzene- xylene (BTEX)	-	Organometallic pesticides/ herbicides						
_	Organic cyanide								
_	Organic corrosives								
Эŧ	hers:								
-		·							
									

Page No. 6 of 16 09/18/92

Ve	ndor name: GROUNDWATER TE	CHN	OLOGY, INC.
Te	chnology type: BIOVENTING		
	neral sources or types of indu at the technology can address:		ial waste or contaminated sites
<u>x</u>	Agriculture	<u>x</u>	Paint/ink formulation
_	Battery recycling/disposal	<u>x</u>	Pesticide manufacturing/use
_	Chloro-alkali manufacturing	<u>x</u>	Petroleum refining and reuse
<u>x</u>	Coal gasification	<u>x</u>	Photographic products
<u>x</u>	Dry cleaners	x	Plastics manufacturing
_	Electroplating	<u>x</u>	Pulp and paper industry
<u>x</u>	Herbicide manufacturing/use	x	Other organic chemical manufacturing
<u>x</u>	Industrial landfills	_	Other inorganic chemical manufacturing
_	Inorganic/organic pigments	_	Semiconductor manufacturing
_	Machine shops	x	Rubber manufacturing
_	Metal ore mining and smelting	X	Wood preserving
<u>x</u>	Municipal Landfill	_	Uranium mining
_	Munitions Manufacturing		
Ot.	hers:		
		-	
			· · · · · · · · · · · · · · · · · · ·

Page No. 7 of 16 09/18/92

Part 1: General Information and Technology Overview (continued)

Vendor name....: GROUNDWATER TECHNOLOGY, INC.

Technology type: BIOVENTING

Technology limitations:

The two limitations to the technology are the ability to aerate the soil/solid matrix and the properties of the contaminant. If the permeability is too low or if the contaminant is both nondegradable and nonvolatile, bioaugment soil vapor extraction will not be effective.

Technology status comments:

Bioaugmented soil vapor extraction has been successfully applied on a commercial scale to treat petroleum hydrocarbons such as gasoline and diesel; organic chemicals such as chlorobenzene and numerous chlorinated solvents ex situ. It has been used to treat soils in volumes of a few hundred cubic yards to tens of thousands. In situ bioremediation has been used to treat sites ranging in size from less than one acre to over 50 acres.

Page No. 8 of 16 09/18/92

PART 2: Pilot- and Full-scale Technologies:

Detailed Inf	ormation	and	Performance	Data
--------------	----------	-----	-------------	------

Vend	or name	: GROUNDWATER TECHNOLOGY, INC.
Techi	nology type	: BIOVENTING
Vend	or services	:
<u>X</u> E	quipment ma	nufacture
_ S	ubcontracto	r for cleanup services
X P	rime contra	ctor for full-service remediation
Pilot	t-scale Equ	ipment/Capabilities
	Major unit	processes:
	The full-s systems.	cale equipment system can be used for pilot-scale
		· · · · · · · · · · · · · · · · · · ·
		·

Page No. 9 of 16 09/18/92

PART	2:	Pilot- a	and	Full-scale	Tec	chnologies:		
		Detailed	d Ir	formation	and	Performance	Data	(continued)

Vendor name:	GROUNDWATER TECHNOLOGY, INC.
Technology type:	BIOVENTING
Number of pilot-	scale systems:
Pla	nned/in design
Unc	der construction
Cor	nstructed
Pilot-scale facil	lity is:
_ Transpo	prtable
_ Fixed	
_ In situ	1
Pilot capacity ra	ange per hour. Capacity of batch processes is prorated.
	to
Can you conduct pat your location?	pilot-scale treatability studies on some type of waste
At a contaminated	i site? No
Quantity of waste	needed for pilot-scale treatability study:
	to
	scale studies conducted on wastes from different sources not include tests on surrogate wastes.

endor name:	GROUNDWATER TECHNOLOGY, INC.
echnology type:	BIOVENTING
'ull-scale Equipm	ment/Capabilities
Major unit p	Processes:
aeration pip constructed are connecte	em consists of a aeration bed-gravel layer with a see which is placed on a soil pile. The pile is around vacuum piping which is on 3 foot centers and d to a vacuum pump. Nutrient infiltration is a through infiltration pipe.
	
-	
<u> </u>	

Page No. 11 of 16 09/18/92

PART 2: Pilot- and Full-scale Technologies:
Detailed Information and Performance Data (continued)

/endor name: GROUNDWATER TECHNOLOGY, INC.
Technology type: BIOVENTING
Full-scale facility is:
\underline{X} Transportable _ Fixed \underline{X} In situ
Full capacity range per hour:
to
Logistical requirements for transportable or in situ technologies:
Space (area): ft2
Water gals. per day
Electrical power: 100 amps
120 volts
Natural gas: ft3 per day
Sewage access: _ yes <u>X</u> no
"Ballpark" estimate of price range per unit of waste treated:
100.00 to 120.00 per Cubic yard

Price estimates shown above do not always include all indirect costs associated with treatment, such as: excavation, permits and treatment of residuals. For price comparisons, users should make certain that vendors provide estimates based on comparable remediation activities.

Vendor name: GROUN	DWATER TECHNOLOGY, IN	<u>c.</u>	
Technology type: BIOVE	ENTING		
Factors that have signi	ficant effect on unit	pri	ce (1 is highest):
1 Initial contam	ninant concentration	_8_	Excavation
<u>3</u> Target contami	nant concentration	_	Waste handling
2 Waste quantity	•	9	Permitting
4 Depth of conta	mination	_	Pretreatment
5 Depth to groun	d water	_	Amount of debris
6 Residual quant	ity	_	Utility/fuel rates
Residual waste	characteristics	<u>10</u>	Labor rates
_7 Site preparati	on		
Others:			
·			
<u> </u>	——————————————————————————————————————		
			
· · · · · · · · · · · · · · · · · · ·			
		_	
			
	· · · · · · · · · · · · · · · · · · ·	<u></u>	·
			

Page No. 13 of 16 09/18/92

Vendor name: GROUNDWATER TECHNOLOGY, INC.
Technology type: BIOVENTING
Number of full-scale cleanups initiated or completed by this firm using this technology:
50
For equipment manufacturers - estimated or actual number of full-scale cleanups by other firms using this equipment:
50
Major permits obtained for a full-scale system, and issuing authority (e.g., RCRA, TSCA, NPDES, and Clean Air Act).
Permit Type: NPDES Issuing Authority.: NJ, MI, CA, NY, MA
Permit Type: Air Permits Issuing Authority.: CA
Permit Type: Consent Orders - EPA Issuing Authority.:
Permit Type: Issuing Authority:
Number of full-scale systems:
12 Planned/in design
20 Under construction
18 Constructed

Page No. 14 of 16 09/18/92

Vendor name	GROU	UNDWATER TECHNOLOGY, 1	INC.	
Technology	type: BIO	VENTING		
Treatabilit	y Study Cap	pabilities (Bench Scal	Le)	
Can yo of was	ou conduct h ste at your	bench-scale treatabili location: <u>X</u> yes	ity studies on some types _ no	
		scale studies conducte tests on surrogate wa		
50	<u>)</u>			
Descri	lption of be	ench-scale testing pro	ocedures:	
nutrie biodeg measur	ents and mea gradation du ced in the f	asuring rates of removering aeration. Air parties of the second s	y columns with soil, adding yal due to volatilization opermeability must be tem, air permeability for and flow through column.	or
nutrie biodeg measur	ents and mea gradation du ced in the f	asuring rates of removering aeration. Air parties of the second s	val due to volatilization (permeability must be em, air permeability for (or
nutrie biodeg measur	ents and mea gradation du ced in the f	asuring rates of removering aeration. Air parties of the second s	val due to volatilization (permeability must be em, air permeability for (or
nutrie biodeg measur	ents and mea gradation du ced in the f	asuring rates of removering aeration. Air parties of the second s	val due to volatilization (permeability must be em, air permeability for (or
nutrie biodeg measur	ents and mea gradation du ced in the f	asuring rates of removering aeration. Air parties of the second s	val due to volatilization (permeability must be em, air permeability for (or
nutrie biodeg measur	ents and mea gradation du ced in the f	asuring rates of removering aeration. Air parties of the second s	val due to volatilization (permeability must be em, air permeability for (or
nutrie biodeg measur	ents and mea gradation du ced in the f	asuring rates of removering aeration. Air parties of the second s	val due to volatilization (permeability must be em, air permeability for (or
nutrie biodeg measur	ents and mea gradation du ced in the f	asuring rates of removering aeration. Air parties of the second s	val due to volatilization (permeability must be em, air permeability for (or
nutrie biodeg measur	ents and mea gradation du ced in the f	asuring rates of removering aeration. Air parties of the second s	val due to volatilization (permeability must be em, air permeability for (or

SUMMARY OF PERFORMANCE DATA

Vendor name...: GROUNDWATER TECHNOLOGY, INC.

Technology type: BIOVENTING _____

Contaminant, contaminant group, or pollutant parameter:

Gasoline

Untreated concentration range Mg/kg	Treated concentration range Mg/kg	Equipment Scale	
1500.000	0.001		
to	to	Full scale	
2000.000	10.000		

Waste description:

Contaminated soil (8000 pounds)

Soil classification:

Sands & silts

Comments:

In situ system operated for 28 months. Over 7000 lbs. of containment were removed.

09/18/92

SUMMARY OF PERFORMANCE DATA

Vendor name...: GROUNDWATER TECHNOLOGY, INC.

Technology type: BIOVENTING

Contaminant, contaminant group, or pollutant parameter:

Diesel

Untreated concentration range Mg/kg	Treated concentration range Mg/kg	Equipment Scale	
5000.000	10.000		
to	to	Full scale	
14000.000	50.000		

Waste description:

River sediments 7000 yards from tanker leak

Soil classification:

Silts & clays

Comments:

In situ system operated for 2 months. Closure was soil on site.

UNITED STATES ENVIROMENTAL PROTECTION AGENCY VENDOR INFORMATION SYSTEM FOR INNOVATIVE TREATMENT TECHNOLOGIES (VISITT)

Part 1: General Information and Technology Overview

Date submitted: 09/30/91
Developer/Vendor name: IT CORPORATION
Street address: 312 Directors Drive
City: Knoxville State: TN Zip: 37923
Country: USA
Contact name: Maureen Leavitt and title: Technical Coordinator
Contact phone: (615) 690-3211
Telex number: () -
Standard technology type:
BIOVENTING
Technology name assigned by vendor (e.g., trade name):
Technology is being or has been tested in EPA SITE Program ? No
Literature on technology available on request ? Yes

Page No. 2 of 14 09/18/92

Vendor name:	IT CORPORATION
Technology type:	BIOVENTING
General descripti	on of technology:
air circulation s given matrix (usu area provides oxy designed nutrient ammonia and phosp provide the essen biodegrade contam	s derived from soil vapor extraction technology. An ystem is established in the unsaturated zone of the ally soil). Air movement throughout the contaminated gen for the biodegradation process. A specially delivery system is attached to provide vapor-phase horus to the subsurface. Together, these substrates tial requirements to stimulate indigenous bacteria to inants in unsaturated matrices. This technology can ly, or in batch form.
-	

Page No. 3 of 14 09/18/92

Part 1: General Information and Technology Overview (continued)

Vendor nar	me:	IT CORPORATION
Technology	y type:	BIOVENTING
Technology	y highliq	ghts:
alternative unsaturate volatile of semi- or maith SVE a contaminate extensive is readily	ve when ed. Althorganics, non-volatalone. Atted air ed air permy biodegrous deliv	excavation is not an option, and the impacted soil is nough it can be effective in the destruction of it has the best advantage when the contaminants are tile. These classes of contaminants are not affected a system can be optimized to operate with minimal emissions, avoiding extensive carbon consumption or mitting. It can be effective on any contaminant that raded. Many of the transport limitations associated very systems or saturated soils are avoided with this
		
		

Page No. 4 of 14 09/18/92

Part 1: General Information and Technology Overview (continued)

Vendor name:	IT CORPORATION
Technology type:	BIOVENTING

Technology status:

- Bench scale or emerging. Technology shown to be feasible through the use of bench-top equipment in the laboratory. Available data cannot be used to scale up to full scale in the absence of additional pilot-scale or full-scale experience for similar applications.
- \underline{X} Pilot scale. Available equipment is of sufficient size to verify technology feasibility or establish the design and operating conditions for a full-scale system. However, it is not of the size typically used for a cleanup.
- Full scale. Available equipment is sized and commercially available for actual site remediation.

Potential or actual waste/media treated:

- X Soil
- X Sludge
- X Solid
- X Natural sediment
- Ground water in situ

۷e	ndor name: IT CORPORATION		
Гe	chnology type: BIOVENTING		
	tential or actual contaminants and is technology:	nd c	ontaminant groups treated by
	Organic		Inorganic
<u>x</u>	Halogenated volatiles	_	Heavy metals
<u>K</u>	Halogenated semivolatiles	_	Nonmetallic toxic elements
<u>K</u>	Nonhalogenated volatiles	_	Radioactive metals
K	Nonhalogenated semivolatiles	_	Asbestos
<u>K</u>	Organic pesticides/herbicides	_	Inorganic cyanides
_	Dioxins/furans	_	Inorganic corrosives
<u>K</u>	PCBs		
<u>x</u>	Polynuclear aromatics (PNAs)		Miscellaneous
<u>K</u>	Solvents	<u>x</u>	Explosives/propellents
<u>K</u>	Benzene-toluene-ethylbenzene- xylene (BTEX)	X	Organometallic pesticides/ herbicides
_	Organic cyanide		
_	Organic corrosives		
)t	hers:		
			<u>.</u>
_			

Ve	ndor name: IT CORPORATION	1	
Te	chnology type: BIOVENTING		
	neral sources or types of indu at the technology can address:		ial waste or contaminated sites
<u>x</u>	Agriculture	<u>x</u>	Paint/ink formulation
_	Battery recycling/disposal	x	Pesticide manufacturing/use
_	Chloro-alkali manufacturing	x	Petroleum refining and reuse
<u>x</u>	Coal gasification	X	Photographic products
x	Dry cleaners	<u>x</u>	Plastics manufacturing
_	Electroplating	<u>x</u>	Pulp and paper industry
<u>x</u>	Herbicide manufacturing/use	X	Other organic chemical manufacturing
<u>x</u>	Industrial landfills	_	Other inorganic chemical manufacturing
<u>x</u>	Inorganic/organic pigments	x	Semiconductor manufacturing
<u>x</u>	Machine shops	x	Rubber manufacturing
_	Metal ore mining and smelting	X	Wood preserving
<u>x</u>	Municipal Landfill	_	Uranium mining
<u>x</u>	Munitions Manufacturing		
^+	.		
Ot	hers: 		
_			
_			
			
			
_			
_			
_			
			·

Page No. 7 of 14 09/18/92

Part 1: General	Information and Technology Overview (continued)
Vendor name:	IT CORPORATION
Technology type:	BIOVENTING
Technology limitat	ions:
configuration of t generally caused h	by be limited ultimately by the physical the matrix. Since there is no mixing or perturbation by water movement, there is a chance that and contact may be limited.
Technology status	comments:

Page No. 8 of 14 09/18/92

۷e	endor name: IT CORPORATION
Te	chnology type: BIOVENTING
Ve	endor services:
_	Equipment manufacture
<u>x</u>	Subcontractor for cleanup services
X	Prime contractor for full-service remediation
Ρi	lot-scale Equipment/Capabilities
	Major unit processes:
	The major components of the pilot system are the ammonia source tank, the inlet pipe, the distribution manifold, the extraction pipes, and the vacuum pump. The vacuum pump outlet can be connected to activated carbon canisters if necessary.
	·

PART 2: Pilot- and Full-scale Technologies: Detailed Information and Performance Data (continued) Vendor name...: IT CORPORATION Technology type: BIOVENTING Number of pilot-scale systems: ____3 Planned/in design ____1 Under construction ____1 Constructed Pilot-scale facility is: _ Transportable _ Fixed X In situ Pilot capacity range per hour. Capacity of batch processes is prorated. _____ to ____ Can you conduct pilot-scale treatability studies on some type of waste at your location? At a contaminated site? Yes Quantity of waste needed for pilot-scale treatability study: 1 to 50 Kilograms

Number of pilot-scale studies conducted on wastes from different sources

___1

or sites. Does not include tests on surrogate wastes.

Page No. 10 of 14 09/18/92

Technology type: BIOVENTING Full-scale Equipment/Capabilities Major unit processes:	Vendor	name	· :	IT CORPORATION
Full-scale Equipment/Capabilities Major unit processes:	Technol	.ogy	type:	BIOVENTING
Major unit processes:	Full-sc	ale	Equipme	ent/Capabilities
	Ma	jor	unit p	rocesses:
	-			
		· <u>-</u>		
			<u> </u>	
	_			
				
				
·				
				
	· <u> </u>			

Page No. 11 of 14 09/18/92

PART 2: Pilot- and Full-scale Technologies: Detailed Information and Performance Data (continued)

endor name:		
echnology type:	BIOVENTING	
Full-scale facil	lity is:	
_ Transports	able _ Fi	xed _ In situ
Full capacity ra	inge per hour:	
	to	·
Space (area)	:	
Space (area)	:	ft2 gals. per day
Space (area)	:	gals. per day amps
Space (area) Water Electrical p	:	ft2 gals. per day amps volts
Space (area) Water Electrical p	:	ft2gals. per dayampsvoltsft3 per day
Space (area) Water Electrical p Natural gas. Sewage acces	:	ft2gals. per dayampsvoltsft3 per day

Price estimates shown above do not always include all indirect costs associated with treatment, such as: excavation, permits and treatment of residuals. For price comparisons, users should make certain that vendors provide estimates based on comparable remediation activities.

Page No. 12 of 14 09/18/92

Vendor name:	IT CORPORATION	
Technology type:	BIOVENTING	·
Factors that have	significant effect on unit	<pre>price (1 is highest):</pre>
Initial	contaminant concentration	Excavation
Target co	ontaminant concentration	Waste handling
Waste qua	antity	Permitting
Depth of	contamination	Pretreatment
Depth to	ground water	Amount of debris
Residual	quantity	<pre> Utility/fuel rates</pre>
Residual	waste characteristics	Labor rates
Site pre	paration	
Others:		
		
	·	
		<u> </u>

Page No. 13 of 14 09/18/92

Vendo	r name: IT CORPORATION	
Techn	ology type: BIOVENTING	
	Number of full-scale cleanups initiated or completed by this firm using this technology:	
	For equipment manufacturers - estimated or actual number of full-scal cleanups by other firms using this equipment:	le
	Major permits obtained for a full-scale system, and issuing authority (e.g., RCRA, TSCA, NPDES, and Clean Air Act).	
	Permit Type: Issuing Authority:	
	Permit Type: Issuing Authority.:	
	Permit Type: Issuing Authority:	
	Permit Type: Issuing Authority.:	
	Number of full-scale systems:	
,	Planned/in design	
	Under construction	
	Constructed	

Vendo	or name: IT CO	RPORATION
Techn	nology type: BIOVE	NTING
Treat	tability Study Capa	bilities (Bench Scale)
	Can you conduct be of waste at your 1	nch-scale treatability studies on some types ocation: X yes _ no
		ale studies conducted to date. ests on surrogate wastes:
	<u>3</u>	•
	Description of ben	ch-scale testing procedures:
	adequate bacterial parameters that in ranges. Second, if	sessment is completed to determine that an population exists, and that all environmental fluence bioremediation are within the preferred required, a bench-scale column study is strate nutrient transport in the specific ed.
,		
•		
,		

VISITT INFORMATION FOR THERMALLY ENHANCED ISVE

UNITED STATES ENVIROMENTAL PROTECTION AGENCY VENDOR INFORMATION SYSTEM FOR INNOVATIVE TREATMENT TECHNOLOGIES (VISITT)

Part 1: General Information and Technology Overview

Date submitted: 10/06/91	
Developer/Vendor name: EM&C ENGINE	ERING ASSOCIATES
Street address: 1665 Scenic Ave.,	Suite 104
City: Costa Mesa	State: <u>CA</u> Zip: <u>92626</u>
Country: USA	
Contact name: Mohamed Elgafi	
and title: President	
Contact phone: (714) 957-6429	Fax Number: (714) 957-6414
Telex number: () -	
Standard technology type:	
SOIL VAPOR EXTRACTION-THERMALLY ENH	ANCED
Technology name assigned by vendor	(e.g., trade name):
Technology is being or has been tes	ted in EPA SITE Program ? No
Literature on technology available	on request ? Yes

Page No. 2 of 7 09/18/92

Part 1: General Information and Technology Overview (continued)

Vendor name...: EM&C ENGINEERING ASSOCIATES Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED General description of technology: The process will require the installation of a grid of injection wells and recovery wells at select locations in between. Steam is injected through the injection wells. The pressure gradient between the injection wells and recovery wells will provide the driving force for steam to flow. The steam flood will vaporize volatiles and drive out nonvolatiles in a fashion similar to any steam stripping process. Vapors will be collected and condensed for off-site treatment.

Part 1: General Information and Technology Overview (continued)

Vendor na	me:	EM&C ENGINEERING ASSOCIATES
Technolog	y type:	SOIL VAPOR EXTRACTION-THERMALLY ENHANCED
Technolog	y highli	ghts:
(1) We hapotential	ve capab custome:	le and experienced staff and we can respond to ers in the same week of the inquiry.
(2) The t sites in	echnology mind and	y was developed with the purpose of wood preservation it is our target market for the application.
		-
		

Page No. 4 of 7 09/18/92

Part 1: General Information and Technology Overview (continued)

Vendor name....: EM&C ENGINEERING ASSOCIATES

Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED

Technology status:

- Bench scale or emerging. Technology shown to be feasible through the use of bench-top equipment in the laboratory. Available data cannot be used to scale up to full scale in the absence of additional pilot-scale or full-scale experience for similar applications.
- X Pilot scale. Available equipment is of sufficient size to verify technology feasibility or establish the design and operating conditions for a full-scale system. However, it is not of the size typically used for a cleanup.
- Full scale. Available equipment is sized and commercially available for actual site remediation.

Potential or actual waste/media treated:

- X Soil
- X Sludge
- X Solid
- Natural sediment
- Ground water in situ

Part 1: General Information and Technology Overview (continued)

Vendor name...: EM&C ENGINEERING ASSOCIATES

Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED					
Potential or actual contaminants and contaminant groups treated by this technology:					
	Organic		Inorganic		
<u>x</u>	Halogenated volatiles	-	Heavy metals		
<u>x</u>	Halogenated semivolatiles	_	Nonmetallic toxic elements		
<u>x</u>	Nonhalogenated volatiles	_	Radioactive metals		
<u>x</u>	Nonhalogenated semivolatiles	_	Asbestos		
<u>x</u>	Organic pesticides/herbicides	_	Inorganic cyanides		
_	Dioxins/furans	_	Inorganic corrosives		
_	PCBs				
<u>x</u>	Polynuclear aromatics (PNAs)		Miscellaneous		
<u>x</u>	Solvents	_	Explosives/propellents		
<u>x</u>	Benzene-toluene-ethylbenzene- xylene (BTEX)	-	Organometallic pesticides/ herbicides		
_	Organic cyanide				
_	Organic corrosives				
Ot	hers:	-			
_					
		, -			
_		*			
	·				

Part 1: General Information and Technology Overview (continued)

Vendor name: EM&C ENGINEERING ASSOCIATES					
Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED					
General sources or types of industrial waste or contaminated sites that the technology can address:					
_ Agriculture	-	Paint/ink formulation			
_ Battery recycling/disposal	<u>x</u>	Pesticide manufacturing/use			
_ Chloro-alkali manufacturing	<u>x</u>	Petroleum refining and reuse			
_ Coal gasification	_	Photographic products			
_ Dry cleaners	<u>x</u>	Plastics manufacturing			
_ Electroplating	-	Pulp and paper industry			
X Herbicide manufacturing/use	_	Other organic chemical manufacturing			
_ Industrial landfills	_	Other inorganic chemical manufacturing			
_ Inorganic/organic pigments	_	Semiconductor manufacturing			
_ Machine shops	<u>x</u>	Rubber manufacturing			
_ Metal ore mining and smelting	<u>x</u>	Wood preserving			
_ Municipal Landfill	_	Uranium mining			
_ Munitions Manufacturing					
Others.					
Others:		·			
		·			

Page No. 7 of 7 09/18/92

Part 1: General Information and Technology Overview (continued)

Vendor name....: EM&C ENGINEERING ASSOCIATES

Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED

Technology limitations:

The technology is limited only by the critical pressure of steam; there are approximately 3000 psi available to work with in terms of pressure drop. We are also limited by steam temperature. We can treat a vast range of organic pollutants. The process is very effective whenever pollutants form azeotropes with water.

Technology status comments:

Steamflood is an old technology utilized for enhanced oil recovery from relatively shallow oil fields, and now revisited for applications on much shallower applications.

UNITED STATES ENVIROMENTAL PROTECTION AGENCY VENDOR INFORMATION SYSTEM FOR INNOVATIVE TREATMENT TECHNOLOGIES (VISITT)

Part 1: General Information and Technology Overview

Date submitted: 09/30/91 Developer/Vendor name: BATTELLE PACIFIC NORTHWEST LABORATORIES Street address: P.O. Box 999 Mail Stop P7-41 City: Richland State: WA Zip: 99352 Country: USA Contact name: Bill Heath and title...: Development Engineer Contact phone: (509) 376-0554 Fax Number: (509) 376-1867 Telex number: Standard technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED Technology name assigned by vendor (e.g., trade name): Technology is being or has been tested in EPA SITE Program ? Literature on technology available on request ? Yes

Page No. 2 of 14 09/18/92

Part 1: General Information and Technology Overview (continued)

Vendor name....: BATTELLE PACIFIC NORTHWEST LABORATORIES

Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED

General description of technology:

In-situ heating is a process which uses common AC electricity to heat soils as a means of significantly improving the performance of conventional soil-venting techniques. By heating the contaminant and soil, the contaminant's vapor pressure is increased to the extent that it diffuses faster into vented air. In addition, by heating the soil to the point where water boils, steam is created which can allow the stripping of semi-volatiles or potentially non-volatile components. The drying of the soil also increases its permeability and hence enables greater removal via venting. The treatment process uses common AC electricity applied to an electrode array placed in the soil. Standard soil venting techniques are used to remove the resulting vapors.

Part 1: General Information and Technology Overview (continued)

Vendor name...: BATTELLE PACIFIC NORTHWEST LABORATORIES Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED Technology highlights: 1. This is an in situ process. Little disturbance of the affected soil is required. 2. The process uses common AC electricity. Capital costs are low compared to other soil heating technologies. 3. Because the soil can be heated to the boiling point of water, higher boiling contaminants (semi-volatiles and potentially non-volatiles) can also be removed.

Page No. 4 of 14 09/18/92

Part 1: General Information and Technology Overview (continued)

Vendor name...: BATTELLE PACIFIC NORTHWEST LABORATORIES

Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED

Technology status:

- \overline{X} Bench scale or emerging. Technology shown to be feasible through the use of bench-top equipment in the laboratory. Available data cannot be used to scale up to full scale in the absence of additional pilot-scale or full-scale experience for similar applications.
- Pilot scale. Available equipment is of sufficient size to verify technology feasibility or establish the design and operating conditions for a full-scale system. However, it is not of the size typically used for a cleanup.
- Full scale. Available equipment is sized and commercially available for actual site remediation.

Potential or actual waste/media treated:

- X Soil
- X Sludge
- Solid
- Natural sediment
- _ Ground water in situ

Part 1: General Information and Technology Overview (continued)

Vendor name...: BATTELLE PACIFIC NORTHWEST LABORATORIES

Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED

Potential or actual contaminants and contaminant groups treated by this technology:				
	Organic		Inorganic	
<u>x</u>	Halogenated volatiles	_	Heavy metals	
<u>x</u>	Halogenated semivolatiles	_	Nonmetallic toxic elements	
<u>x</u>	Nonhalogenated volatiles	_	Radioactive metals	
<u>x</u>	Nonhalogenated semivolatiles	_	Asbestos	
<u>x</u>	Organic pesticides/herbicides	_	Inorganic cyanides	
_	Dioxins/furans	_	Inorganic corrosives	
_	PCBs			
<u>x</u>	Polynuclear aromatics (PNAs)		Miscellaneous	
<u>x</u>	Solvents	_	Explosives/propellents	
<u>x</u>	Benzene-toluene-ethylbenzene- xylene (BTEX)	-	Organometallic pesticides/ herbicides	
_	Organic cyanide			
_	Organic corrosives			
	ners:	-		
14.1				

Part 1: General Information and Technology Overview (continued)

Vendor name...: BATTELLE PACIFIC NORTHWEST LABORATORIES

Technology type: SOIL VAPOR EXTRACTION-THERMADEL ENHANCED					
	General sources or types of industrial waste or contaminated sites that the technology can address:				
<u>x</u>	Agriculture	_	Paint/ink formulation		
_	Battery recycling/disposal	<u>x</u>	Pesticide manufacturing/use		
_	Chloro-alkali manufacturing	<u>x</u>	Petroleum refining and reuse		
<u>x</u>	Coal gasification	_	Photographic products		
x	Dry cleaners	<u>x</u>	Plastics manufacturing		
_	Electroplating	_	Pulp and paper industry		
<u>x</u>	Herbicide manufacturing/use	_	Other organic chemical manufacturing		
<u>x</u>	Industrial landfills	_	Other inorganic chemical manufacturing		
<u>x</u>	Inorganic/organic pigments	_	Semiconductor manufacturing		
<u>x</u>	Machine shops	<u>x</u>	Rubber manufacturing		
_	Metal ore mining and smelting	<u>x</u>	Wood preserving		
<u>x</u>	Municipal Landfill	_	Uranium mining		
_	Munitions Manufacturing				
Oth	ners:				

Page No. 7 of 14 09/18/92

Part 1: General Information and Technology Overview (continued)

Vendor name...: BATTELLE PACIFIC NORTHWEST LABORATORIES

Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED

Technology limitations:

In situ heating is limited by the temperature to which the soil can be heated. High boiling contaminants can not be treated.

Technology status comments:

PART 2: Pilot- and Full-scale Technologies:

Detailed Information and Performance Data

Vendor name...: BATTELLE PACIFIC NORTHWEST LABORATORIES

Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED

Vendor	services:
--------	-----------

- _ Equipment manufacture
- _ Subcontractor for cleanup services
- _ Prime contractor for full-service remediation

Pilot-scale Equipment/Capabilities Major unit processes:

Page No. 9 of 14 09/18/92

Vendor name: BATTELLE PACIFIC NORTHWEST LABORATORIES
Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED
Number of pilot-scale systems:
Planned/in design
Under construction
Constructed
Pilot-scale facility is:
_ Transportable
Fixed
_ In situ
Pilot capacity range per hour. Capacity of batch processes is prorated.
to
Can you conduct pilot-scale treatability studies on some type of waste at your location? No
At a contaminated site? No
Quantity of waste needed for pilot-scale treatability study:
to
Number of pilot-scale studies conducted on wastes from different sources or sites. Does not include tests on surrogate wastes.

Page No. 10 of 14 09/18/92

PART 2: Pilot- and Full-scale Technologies:
Detailed Information and Performance Data (continued)

Vendor name....: BATTELLE PACIFIC NORTHWEST LABORATORIES

Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED

Full-scale Equipment/Capabilities

Major unit processes:	
	···
	·
	•
	
	

Page No. 11 of 14 09/18/92

activities.

PART 2: Pilot- and Full-scale Technologies: Detailed Information and Performance Data (continued)

Vendor name: BATTELLE PACIFIC NORTHWEST LAB	ORATORIES
Technology type: SOIL VAPOR EXTRACTION-THERMALL	Y ENHANCED
Full-scale facility is:	
_ Transportable _ Fixed _ In	situ
Full capacity range per hour:	
to	
Logistical requirements for transportable or in Space (area): ft2	situ technologies:
Water gals. per day	
Electrical power:amps	
volts	
Natural gas: ft3 per day	
Sewage access: _ yes _ no	
"Ballpark" estimate of price range per unit of	waste treated:
N/A toper	
Price estimates shown above do not always include associated with treatment, such as: excavation, possible as a second control of the control	all indirect costs

treatment of residuals. For price comparisons, users should make certain that vendors provide estimates based on comparable remediation

Page No. 12 of 14 09/18/92

PART 2: Pilot- and Full-scale Technologies: Detailed Information and Performance Data (continued)

Vendor name...: BATTELLE PACIFIC NORTHWEST LABORATORIES Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED Factors that have significant effect on unit price (1 is highest): ____Initial contaminant concentration Excavation Target contaminant concentration ____Waste handling __ Waste quantity __ Permitting Depth of contamination Pretreatment __ Amount of debris _ Depth to ground water _ Utility/fuel rates Residual quantity _ Residual waste characteristics __ Labor rates __ Site preparation Others:

PART 2: Pilot- and Full-scale Technologies: Detailed Information and Performance Data (continued)

Vendor name...: BATTELLE PACIFIC NORTHWEST LABORATORIES Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED Number of full-scale cleanups initiated or completed by this firm using this technology: For equipment manufacturers - estimated or actual number of full-scale cleanups by other firms using this equipment: Major permits obtained for a full-scale system, and issuing authority (e.g., RCRA, TSCA, NPDES, and Clean Air Act). Permit Type....:
Issuing Authority:

Permit Type....:
Issuing Authority.:

Permit Type....:
Issuing Authority:

Number of full-scale systems: ____1 Planned/in design _____Under construction ____ Constructed

Permit Type....:

PART 2: Pilot- and Full-scale Technologies: Detailed Information and Performance Data (continued)

Vendor name...: BATTELLE PACIFIC NORTHWEST LABORATORIES Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED Treatability Study Capabilities (Bench Scale) Can you conduct bench-scale treatability studies on some types of waste at your location: X yes _ no Number of bench-scale studies conducted to date. Does not include tests on surrogate wastes: Description of bench-scale testing procedures:

Page No. 1 of 22 09/18/92

UNITED STATES ENVIROMENTAL PROTECTION AGENCY VENDOR INFORMATION SYSTEM FOR INNOVATIVE TREATMENT TECHNOLOGIES (VISITT)

Part 1: General Information and Technology Overview

Date submitted: 05/16/91
Developer/Vendor name: NOVATERRA
Street address: 373 Van Ness Avenue, Suite 210
City: Torrance State: CA Zip: 90501
Country: USA
Contact name: Phil La Mori and title: PhD Executive Vice President
Contact phone: (213) 328-9433
Telex number: () -
Standard technology type:
SOIL VAPOR EXTRACTION-THERMALLY ENHANCED
Technology name assigned by vendor (e.g., trade name):
Detoxifier (TM)
Technology is being or has been tested in EPA SITE Program ? Yes
Literature on technology available on request ? Yes

Page No. 2 of 22 09/18/92

Part 1: General Information and Technology Overview (continued)

Vendor nam	ne:	NOVATERRA				
Technology	type:	SOIL VAPOR	R EXTRACTIO	n-thermall	Y ENHANCED	
General de	escription	on of techn	nology:			
treatment remediate TM is its using stea reductive,	unit that contamin flexibilum and he and new	r TM is a pat uses in nated soil. lity. The ot air; and utralizing ibility all	situ physi One uniq Detoxifier i introduce agents for	cal and ch ue capabil TM can: bioactive a variety	emical tre ity of the strip VOCs , oxidativ of contam	atment to Detoxifier and SVOCs e, inants. The
performing	remedia	r TM consis ation to 30 oile proces) feet in d	epth. The	drill towe	
		<u>,</u>		· · · · · · · · · · · · · · · · · · ·		
•						
					-	
	-	· · · · · · · · · · · · · · · · · · ·	 			
	-			****		
	•					
	<u>.</u>		·			· · ·
						
				·- · · · · · · · · · · · · · · · · · ·		

Part	1 •	General	Information	and	Technology	Overview	(continued)
rarc	_i	GEHELGI	THITOTHECTON	ania	Tecimoroda	OASTATEM	(COMETHINEA

Vendor name...: NOVATERRA Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED Technology highlights: The technology advantages are: * The process provides ACTIVE in situ remediation which is achieved using two hollow drill blades, each 5 feet in diameter and is capable of mixing soil and dispensing steam/hot air or proprietary admixes, chemicals, or solutions. * The Detoxifier TM is a demonstrated remedial action technology in the U.S. EPA Superfund Innovative Technology Evaluation (SITE) program. * The Detoxifier TM does not require soil disposal or landfilling during a RCRA corrective action because no soil or debris is removed. * NOVATERRA has obtained a permit for its transportable treatment unit in California. * The Detoxifier TM provides steam/hot air remediation with no significant toxic air emissions to adversely impact the nearby residential neighborhood or to violate stringent air quality regulations. This is achieved by treating the contaminated air stream onsite and reinjecting the treated air. * The technology is currently meeting the applicable California Department of Health Services cleanup standards at a state Superfund site in the Los Angeles basin.

Page No. 4 of 22 09/18/92

Part 1: General Information and Technology Overview (continued)

Vendor name....: NOVATERRA

Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED

Technology status:

- Bench scale or emerging. Technology shown to be feasible through the use of bench-top equipment in the laboratory. Available data cannot be used to scale up to full scale in the absence of additional pilot-scale or full-scale experience for similar applications.
- Pilot scale. Available equipment is of sufficient size to verify technology feasibility or establish the design and operating conditions for a full-scale system. However, it is not of the size typically used for a cleanup.
- X Full scale. Available equipment is sized and commercially available for actual site remediation.

Potential or actual waste/media treated:

- X Soil
- Sludge
- X Solid
- X Natural sediment
- Ground water in situ

Vendor name....: NOVATERRA

Part 1: General Information and Technology Overview (continued)

Te	chnology type: SOIL VAPOR EXTRA	ACTION-THERMALLY ENHANCED
	tential or actual contaminants a	and contaminant groups treated by
	Organic	Inorganic
X	Halogenated volatiles	_ Heavy metals
<u>x</u>	Halogenated semivolatiles	_ Nonmetallic toxic elements
<u>x</u>	Nonhalogenated volatiles	_ Radioactive metals
X	Nonhalogenated semivolatiles	_ Asbestos
_	Organic pesticides/herbicides	_ Inorganic cyanides
_	Dioxins/furans	_ Inorganic corrosives
_	PCBs	
<u>x</u>	Polynuclear aromatics (PNAs)	Miscellaneous
<u>x</u>	Solvents	_ Explosives/propellents
<u>x</u>	Benzene-toluene-ethylbenzene- xylene (BTEX)	<pre>Organometallic pesticides/ herbicides</pre>
_	Organic cyanide	,
_	Organic corrosives	
Ot!	hers:	

Vendor name...: NOVATERRA

Part 1: General Information and Technology Overview (continued)

v	at the technology can address:	v	Paint (inh formulation
<u>x</u>	Agriculture	x	·
-	Battery recycling/disposal	<u>x</u>	Pesticide manufacturing/use
-	Chloro-alkali manufacturing	<u>x</u>	Petroleum refining and reuse
<u>K</u>	Coal gasification	<u>x</u>	Photographic products
<u>x</u>	Dry cleaners	X	Plastics manufacturing
<u>x</u>	Electroplating	<u>x</u>	Pulp and paper industry
_	Herbicide manufacturing/use	<u>x</u>	Other organic chemical manufacturing
<u>x</u>	Industrial landfills	<u>x</u>	Other inorganic chemical manufacturing
<u>x</u>	Inorganic/organic pigments	<u>x</u>	Semiconductor manufacturing
<u>x</u>	Machine shops	<u>x</u>	Rubber manufacturing
_	Metal ore mining and smelting	x	Wood preserving
_	Municipal Landfill	_	Uranium mining
_	Munitions Manufacturing		
壮	hers:		

Page No. 7 of 22 09/18/92

Part 1: General Information and Technology Overview (continued)

Vendor name....: NOVATERRA

Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED

Technology limitations:

- * Subterranean obstructions such as rocks over 12 inches in diameter, steel pipe, and pilings must be removed prior to initiating site remediation using this technology.
- * Contaminated soil at depths below 30 feet can not be treated using this technology at this time.
- * Chemical compounds with boiling points greater than 400 degrees F can not be removed using this technology.
- * The contaminated soil to be treated must be sufficiently compacted to withstand the weight of the equipment without yielding.
- * This technology cannot remediate contaminated soil under buildings.
- * Soil compaction may be required after performing remediation using this technology.
- * Very hard soils may be difficult to treat using this technology.

Technology status comments:

The capabilities and experience of the NOVATERRA in situ Detoxifier TM have been demonstrated by the ongoing remediation of a California Superfund site in the Los Angeles area. A private company contracted NOVATERRA (formerly Toxic Treatments) to clean up approximately 16,000 cubic yards (now 40,000 cubic yards) of contaminated soil at its Los Angeles area facility. During initial tests in September of 1988, overall cleanup achieved nearly 96 and 85 percent removals of volatile organic compounds and semivolatile organic compounds, respectively. A U.S. EPA SITE demonstration test was conducted in late 1989 and early 1990. The results of the SITE test showed that "the process removed volatile organic compounds at an average removal efficiency of approximately 85 percent from the contaminated soil tested."

Approximately one-half of the above site has been remediated to date. Post-treatment soil chemical analysis of the 49 chemicals of concern has been performed on 20 percent of the site in both the vadose and saturated zones by the California Department of Health Services. The results, to date, meet or exceed cleanup levels over 98 percent of the time.

Page No. 8 of 22 09/18/92

PART 2: Pilot- and Full-scale Technologies:
Detailed Information and Performance Data

Vendor name...: NOVATERRA

Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED

Vendor services:

- _ Equipment manufacture
- X Subcontractor for cleanup services
- X Prime contractor for full-service remediation

Pilot-scale Equipment/Capabilities

Major unit processes:

The pilot-scale Detoxifier TM simulates the soil mixing, steam and hot air flow characteristics, and other process conditions of the full-scale Detoxifier TM. The pilot system contains a reactor and all necessary support equipment. The pilot system is currently being redesigned from a horizontal to vertical reactor to more closely simulate the full-scale system. The pilot-scale system is supported by an on-line Ratfisch 55CA flame ionization detector and a SRI gas chromatograph. The entire system is contained within a container that can be transported by land or sea.

Vendor name: NOVATERRA
Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED
Number of miles and a suction.
Number of pilot-scale systems:
Planned/in design
Under construction
1 Constructed
Pilot-scale facility is:
X Transportable
Fixed
-
_ In situ
Pilot capacity range per hour. Capacity of batch processes is prorated.
to 20.00 Kilograms
Can you conduct pilot-scale treatability studies on some type of waste at your location? Yes
At a contaminated site? Yes
Quantity of waste needed for pilot-scale treatability study:
60 to800 Kilograms
Number of pilot-scale studies conducted on wastes from different sources
or sites. Does not include tests on surrogate wastes.
2

Page No. 10 of 22 09/18/92

PART 2: Pilot- and Full-scale Technologies:
Detailed Information and Performance Data (continued)

Vendor name...: NOVATERRA

Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED

Full-scale Equipment/Capabilities

Major unit processes:

Mobile Drill Tower - The drill tower consists of two hollow overlapping drill blades, each 5 feet in diameter and capable of steam/hot air, and chemical treatment. For the steam/hot air technology, the drill blades inject steam and hot air into the soil, providing the driving force for contaminant stripping. The rise in temperature transforms soil-bound organic contaminants into organic vapors. Contaminant vapors are carried to the soil surface by the steam/hot air flow, emerge from the soil beneath a steel shroud, and are transferred to the process unit for treatment.

The Process Unit - For the steam/hot air technology, the contaminated vapor stream is scrubbed in the process unit to remove particulates. The air stream vapors are then condensed in a multi-stage cooling system. The air-bound contaminants that do not condense are adsorbed onto granulated carbon. After exiting the carbon bed, the airstream is compressed, transferred to the process tower, and re-injected into the ground to treat additional soil.

	 		_		•		
	 	 					
	 · · · · · · · · · · · · · · · · · · ·						
	 						
_						_	
	 		•				

Page No. 11 of 22 09/18/92

activities.

PART 2: Pilot- and Full-scale Technologies: Detailed Information and Performance Data (continued)

Vendor name: NOVATE	RRA
Technology type: SOIL V	APOR EXTRACTION-THERMALLY ENHANCED
Full-scale facility is:	
X Transportable	_ Fixed _ In situ
Full capacity range per	hour:
5.00 to	20.00 Cu yds/hr
Logistical requirements	for transportable or in situ technologies:
Space (area):	<u>1</u> ft2
Water	4 gals. per day
Electrical power:	amps
-	volts
Natural gas:	ft3 per day
Sewage access:	yes <u>X</u> no
"Ballpark" estimate of p	price range per unit of waste treated:
100.00 to	300.00 per Cubic yard
associated with treatment, treatment of residuals. I	ve do not always include all indirect costs, such as: excavation, permits and for price comparisons, users should make ide estimates based on comparable remediation

PART 2: Pilot- and Full-scale Technologies: Detailed Information and Performance Data (continued)

Vendor name: NOVATERRA	
Technology type: SOIL VAPOR EXTRACTION-THE	RMALLY ENHANCED
Factors that have significant effect on unit	price (1 is highest):
1 Initial contaminant concentration	Excavation
2 Target contaminant concentration	Waste handling
3 Waste quantity	Permitting
5 Depth of contamination	Pretreatment
Depth to ground water	6 Amount of debris
Residual quantity	4 Utility/fuel rates
Residual waste characteristics	4 Labor rates
6 Site preparation	
2 soil type	
	<u> </u>
· · · · · · · · · · · · · · · · · · ·	
·	

PART 2: Pilot- and Full-scale Technologies: Detailed Information and Performance Data (continued) Vendor name....: NOVATERRA Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED Number of full-scale cleanups initiated or completed by this firm using this technology: 1 For equipment manufacturers - estimated or actual number of full-scale cleanups by other firms using this equipment: Major permits obtained for a full-scale system, and issuing authority (e.g., RCRA, TSCA, NPDES, and Clean Air Act). Permit Type.....: air emission (for engine) Issuing Authority .: South Coast AQMD, CA Permit Type....: transportable treatment Issuing Authority.: CA\CA Dept. of Health Serv. Permit Type....: fire Issuing Authority.: local Permit Type....: land use Issuing Authority.: local Number of full-scale systems: Planned/in design

Under construction

1 Constructed

Page No. 14 of 22 09/18/92

PART	2:	Pilot- a	nd F	ull-scale	Tec	hnologies:		
		Detailed	Inf	ormation	and	Performance	Data	(continued)

Vendor	name:	NOVATERRA
Technol	logy type:	SOIL VAPOR EXTRACTION-THERMALLY ENHANCED
Treatai	oility Stud	y Capabilities (Bench Scale)
		uct bench-scale treatability studies on some types your location: X yes _ no
		nch-scale studies conducted to date. lude tests on surrogate wastes:
-	2	
D€	escription	of bench-scale testing procedures:
be ma ex	ontaminants ench-scale eximize con operimental	h-scale testing procedures focus on the specific targeted for steam/hot air stripping. During tests, physical/chemical mechanisms are explored to taminant removal from the soil matrix. The conditions are varied to determine their effect on ants of concern.
_		· · · · · · · · · · · · · · · · · · ·
_		

09/18/92

SUMMARY OF PERFORMANCE DATA

Vendor name...: NOVATERRA

Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED

Contaminant, contaminant group, or pollutant parameter:

Halogenated volatiles

Untreated concentration range Mg/kg	Treated concentration range Mg/kg	Equipment Scale	
1.000	0.000		
to 100000.000	to 100.000	Full scale	

Waste description:

contaminated soil

Soil classification:

clay to sandy

Comments:

Vendor name...: NOVATERRA

Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED

Contaminant, contaminant group, or pollutant parameter:

Nonhalogenated volatiles

Untreated concentration range Mg/kg	Treated concentration range Mg/kg	Equipment Scale
1.000	ND	
to 100000.000	to 100.000	Full scale

Waste description:

contaminated soil

Soil classification:

clay to sandy

Comments:

Vendor name...: NOVATERRA

Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED

Contaminant, contaminant group, or pollutant parameter:

Solvents

Untreated concentration range Mg/kg	Treated concentration range Mg/kg	Equipment Scale	
1.000 to	ND to	Full scale	
100000.000	100.000	Full scale	

Waste description:

contaminated soil

Soil classification:

clay to sandy

Comments:

Vendor name...: NOVATERRA

Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED

Contaminant, contaminant group, or pollutant parameter:

Halogenated semivolatiles

Untreated concentration range Mg/kg	Treated concentration range Mg/kg	Equipment Scale
1.000	ND	- 1.0
to 100000.000	to 1000.000	Full scale

Waste description:

contaminated soil

Soil classification:

clayey to sandy

Comments:

Vendor :	name	:	NOVATERRA				
Technol	ogy typ	≘:	SOIL VAPOR EXTE	LAC'	rion-therm	LLY ENHA	NCED
Site na	me	:	GATX Annex Term	in	al Site		*
City		:	San Pedro		· · · · · · · · · · · · · · · · · · ·	State:	<u>CA</u>
Country		:	USA				
5	4		440000000000000000000000000000000000000				
Project	type	:	SUPERFUND/STATE	اِيا :	SAD		
Client	contact	:	Dave Wright				
Affilia	tion	:	GATX		·····		
Phone n	umber	:	(213) 436-0210				
- <i>?</i>	- - 1						
Equipme							
	_ Bend	ch s	scale				
	- Pilo	ot i	scale				
	X Ful:	Lso	cale				
Brojest	at stud	/ W /	onth/Year):				
riojecc							
	Contrac	cted	i	:	1986		
	Underwa	ìγ		:	<u>x</u>		
	Complet	ed,	To be completed	:	1992		
Waste de	escripti	ion	•				
	_			_			
	Soil co	onta	aminated with VO	CS	and semivo	latiles	

Phone number: (619) 587-9071

AVAILABLE REFERENCES

Vendor name : NOVATERRA	
Technology type: SOIL VAPOR EXTRACTION-THERMAL	LY ENHANCED
Reference: U.S. EPA SITE Contractor	
Source:	
Name/Organization: Victor Engleman, SAIC	·
Address: 10240 Sorrento Valley Road, #204	
	- No. 11 - No. 12
City : San Diego	
State : <u>CA</u>	
Zip : 92121	

AVAILABLE REFERENCES

Vendor name : NOVATERRA
Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED
Reference: In Situ Detoxifier
Source:
Name/Organization: Kimberly A. Roy, HAZMAT World
Address: Tower-Borner Publishing, Inc.
City : Glen Ellyn
State : <u>IL</u>
Zip :
Phone number: () -

AVAILABLE REFERENCES

Vendor na	me : NOVATERRA
Technolog	y type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED
Reference	: U.S. Patent Office
Source:	
Name/Orga	nization: U.S. Patent Numbers 4,776,409 (10/11/88)
Address:	4,844,807 (07/04/89) 4,844,839 (07/04/89)
city :	Washington
State :	<u>DC</u>
Zip :	
Phone num	hav. /) -

UNITED STATES ENVIROMENTAL PROTECTION AGENCY VENDOR INFORMATION SYSTEM FOR INNOVATIVE TREATMENT TECHNOLOGIES (VISITT)

Part 1: General Information and Technology Overview

Date submitted: 05/20/91
Developer/Vendor name: UDELL TECHNOLOGIES, INC.
Street address: 4701 Doyle Street, Suite 5
City: Emeryville State: CA Zip: 94608
Country: USA
Contact name: Dr. Lloyd Stewart and title: Project Manager
Contact phone: (415) 653-9477
Telex number: () -
Standard technology type:
SOIL VAPOR EXTRACTION-THERMALLY ENHANCED
Technology name assigned by vendor (e.g., trade name):
Technology is being or has been tested in EPA SITE Program ? Yes
Literature on technology available on request ? Yes

Page No. 2 of 24 09/18/92

Part 1: General Information and Technology Overview (continued)

Vendor name....: UDELL TECHNOLOGIES, INC.

Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED

General description of technology:

The in situ steam injection vacuum extraction process is designed to remove volatile and semivolatile organic compounds from an area of contaminated soil without need for excavation. The process operates through use of wells constructed in the contaminated soil. High quality steam is added to the soil through some wells, called injection wells. Other wells, known as extraction wells, are operated under vacuum to remove liquid and vapor contaminants and water from the soil. The injection of steam into the ground raises the temperature of the soil and causes the most volatile compounds to vaporize. A pressure gradient is formed between the injection and extraction wells, and this drives the flow of steam and vaporized contaminants towards the extraction wells. Raising the temperature of the soil matrix also assists in the removal of less volatile compounds by increasing their in situ vapor pressure.

After the entire soil mass under treatment has reached the steam

temperature, as determined by soil-temperature monitors, and steam breakthrough occurs at the extraction wells, the flow of steam continues only intermittently with a constant vacuum applied to the extraction wells. The vacuum extraction removes much of the remaining contamination. As the soil in the high permeability region cools, the steam remaining in the low permeability region evaporates the contaminants.

Part 1	:	General	Information	and	Technology	Overview	(continued)
--------	---	---------	-------------	-----	------------	----------	-------------

Vendor name: UDELL TECHNOLOGIES, INC.
Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED
Technology highlights:
*The process operates on contaminated soil in situ, so little contaminated material needs to be excavated, stored, or disposed.
*The addition of steam enables the process to remove semivolatile compounds, and is more efficient, rapid, and complete than treatment with vacuum extraction alone.
*The volatile compounds are removed from the soil in concentrated form. This reduces the amount of waste requiring treatment or disposal, and facilitates recycling of many compounds.
*The process will also remove contamination from groundwater, if any is present in the treatment area.
*Once the wells are drilled and the system installed, treatment is not labor-intensive. The system has few mechanical parts which would require service during treatment.
*The process is most cost-effective for large and deep areas of contamination where technologies requiring excavation would be difficult or impossible. The process can be applied in sections to treat an area of any size.

Page No. 4 of 24 09/18/92

Part 1: General Information and Technology Overview (continued)

Vendor name...: UDELL TECHNOLOGIES, INC.

Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED

Technology status:

- Bench scale or emerging. Technology shown to be feasible through the use of bench-top equipment in the laboratory. Available data cannot be used to scale up to full scale in the absence of additional pilot-scale or full-scale experience for similar applications.
- Pilot scale. Available equipment is of sufficient size to verify technology feasibility or establish the design and operating conditions for a full-scale system. However, it is not of the size typically used for a cleanup.
- Y Full scale. Available equipment is sized and commercially available for actual site remediation.

Potential or actual waste/media treated:

- X Soil
- X Sludge
- Solid
- Natural sediment
- Ground water in situ

Part 1: General Information and Technology Overview (continued)

Vendor name...: UDELL TECHNOLOGIES, INC.

Te	chnology type: SOIL VAPOR EXTRA	ACTION-THERMALLY ENHANCED
	tential or actual contaminants a is technology:	and contaminant groups treated by
	Organic	Inorganic
<u>x</u>	Halogenated volatiles	_ Heavy metals
X	Halogenated semivolatiles	_ Nonmetallic toxic elements
<u>x</u>	Nonhalogenated volatiles	_ Radioactive metals
<u>x</u>	Nonhalogenated semivolatiles	Asbestos
_	Organic pesticides/herbicides	_ Inorganic cyanides
_	Dioxins/furans	_ Inorganic corrosives
<u>x</u>	PCBs	
<u>x</u>	Polynuclear aromatics (PNAs)	Miscellaneous
<u>x</u>	Solvents	_ Explosives/propellents
x	Benzene-toluene-ethylbenzene- xylene (BTEX)	<pre>Organometallic pesticides/ herbicides</pre>
_	Organic cyanide	
-	Organic corrosives	
Ot 1	ners:	

Page No. 6 of 24 09/18/92

Part 1: General Information and Technology Overview (continued)

Vendor name...: UDELL TECHNOLOGIES, INC.

Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED							
General sources or types of industrial waste or contaminated sites that the technology can address:							
_ Agriculture	<u>x</u>	Paint/ink formulation					
_ Battery recycling/disposal	_	Pesticide manufacturing/use					
_ Chloro-alkali manufacturing	<u>x</u>	Petroleum refining and reuse					
<u>X</u> Coal gasification	_	Photographic products					
X Dry cleaners	_	Plastics manufacturing					
_ Electroplating	<u>x</u>	Pulp and paper industry					
_ Herbicide manufacturing/use	_	Other organic chemical manufacturing					
\underline{X} Industrial landfills	_	Other inorganic chemical manufacturing					
_ Inorganic/organic pigments	<u>x</u>	Semiconductor manufacturing					
X Machine shops	_	Rubber manufacturing					
_ Metal ore mining and smelting	<u>x</u>	Wood preserving					
\underline{X} Municipal Landfill	-	Uranium mining					
_ Munitions Manufacturing							
Others:							

Page No. 7 of 24 09/18/92

Part 1: General Information and Technology Overview (continued)

Vendor name...: UDELL TECHNOLOGIES, INC.

Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED

Technology limitations:

*The technology requires a site to have a barrier layer below the depth of contamination. Dependent upon the type of contamination, this layer can be either a high permeability layer, a low permeability layer or the water table.

*The high permeability barrier works with low boiling point contaminants. A low permeability barrier works with a dense nonaqueous phase liquid, and the water table works with contaminants that are lighter than water.

*If the site contains a high concentration (>200ppm) of heavier-than-water organics, there is a possibility that these compounds might be mobilized downward into groundwater.

*Treatment of shallow (<10 feet) contaminated areas is less cost effective than deeper areas in comparison to competing technologies.

Technology status comments:

In August of 1988 a successful pilot-scale demonstration of the process was completed. The site was contaminated by a mixture of solvents and 764 pounds of contaminant were removed from the 10-foot diameter, 12-foot deep test region. Three full scale demonstrations of the process are in the design phase. One is a system to remediate a gasoline spill both above and below the water table to depths of 120 feet. A second addresses free product jet fuel floating on top of groundwater at a depth of approximately 16 feet. The third demonstration will treat a burn pit and soil contaminated with solvents down to a depth of approximately 90 feet.

Page No. 8 of 24 09/18/92

PART 2: Pilot- and Full-scale Technologies:
Detailed Information and Performance Data

Vendor name...: UDELL TECHNOLOGIES, INC.

Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED

Vendor services:

- _ Equipment manufacture
- X Subcontractor for cleanup services
- X Prime contractor for full-service remediation

Pilot-scale Equipment/Capabilities

Major unit processes:

The skid-mounted steam generator contains a boiler, water conditioner, and makeup tank, and is supplied with fuel. The piping that connects the steam generator to the injection wells contains liquid traps to assure high quality steam, and regulators to control the flow. The wells (injection and extraction) are drilled to below the depth of contamination on the site. A negative pressure is maintained on the extraction wells by a high-volume vacuum pump. A liquid pump is used to remove condensed organics and water from the wells. The extracted vapors are treated in a condenser and knock-out drum. Gases remaining are treated in a carbon adsorption system, while the condensed liquids are added to the liquids from the extraction wells in a settling tank. An oil/water separator removes the concentrated organics for recycling or disposal. The remaining contaminated water requires treatment or it can be discharged to an industrial treatment facility.

<u></u>	· · · · · · · · · · · · · · · · · · ·			
		 	-	

Page No. 9 of 24 09/18/92

PART 2: Pilot- and Full-scale Technologies:
Detailed Information and Performance Data (continued)

Vendor name: UDELL TECHNOLOGIES, INC.
Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED
Number of pilot-scale systems:
3 Planned/in design
Under construction
1 Constructed
Pilot-scale facility is:
X Transportable
_ Fixed
_ In situ
Pilot capacity range per hour. Capacity of batch processes is prorated.
to
Can you conduct pilot-scale treatability studies on some type of waste at your location? No
At a contaminated site? Yes
Quantity of waste needed for pilot-scale treatability study:
500 to Cubic yard
Number of pilot-scale studies conducted on wastes from different sources or sites. Does not include tests on surrogate wastes.
<u> </u>

Page No. 10 of 24 09/18/92

PART 2: Pilot- and Full-scale Technologies:

Detailed Information and Performance Data (continued)

Vendor name...: UDELL TECHNOLOGIES, INC.

Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED

Full-scale Equipment/Capabilities

Major unit processes:

The skid-mounted steam generator contains a boiler, water conditioner, and makeup tank, and is supplied with fuel. The piping that connects the steam generator to the injection wells contains liquid traps to assure high quality steam, and regulators to control the flow. The wells (injection and extraction) are drilled to below the depth of contamination on the site. A negative pressure is maintained on the extraction wells by a high-volume vacuum pump. A liquid pump is used to remove condensed organics and water from the wells. The extracted vapors are treated in a condenser and knock-out drum. Gases remaining are treated in a carbon adsorption system, while the condensed liquids are added to the liquids from the extraction wells in a settling tank. An oil/water separator removes the concentrated organics for recycling or disposal. remaining contaminated water requires treatment or it can be discharged to an industrial treatment facility.

Page No. 11 of 24 09/18/92

PART	2:	Pilot-	and	Full-scale	Tec	chnologies:		
		Detaile	d Ir	nformation	and	Performance	Data	(continued)

Vendor name: UDELL TECHNOLOGIES, INC.
Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED
Full-scale facility is:
X Transportable _ Fixed _ In situ
Full capacity range per hour:
to
Logistical requirements for transportable or in situ technologies:
Space (area): ft2
Water gals. per day
Electrical power: amps
volts
Natural gas: ft3 per day
Sewage access: _ yes _ no
"Ballpark" estimate of price range per unit of waste treated:
50.00 to 125.00 per Cubic yard

Price estimates shown above do not always include all indirect costs associated with treatment, such as: excavation, permits and treatment of residuals. For price comparisons, users should make certain that vendors provide estimates based on comparable remediation activities.

PART 2: Pilot- and Full-scale Technologies: Detailed Information and Performance Data (continued)

vendor name: UDELL	TECHNOLOGIES, INC.		
Technology type: SOIL V	APOR EXTRACTION-THERM	(ALĽ	Y ENHANCED
Factors that have signifi	cant effect on unit	pri	ce (1 is highest):
13 Initial contamir	mant concentration	<u>14</u>	Excavation
6 Target contamina	int concentration	_7	Waste handling
5 Waste quantity		<u>15</u>	Permitting
2 Depth of contami	nation	<u>16</u>	Pretreatment
10 Depth to ground	water	<u>17</u>	Amount of debris
11 Residual quantit	:у	<u>8</u>	Utility/fuel rates
12 Residual waste	characteristics	<u>9</u>	Labor rates
3 Site preparation	1		
Others:			
1 areal extent 4 surface activitie) :		
			
		_	
	· · · · · · · · · · · · · · · · · · ·		
-			
		٠	
			
	·		

Page No. 13 of 24 09/18/92

PART 2: Pilot- and Full-scale Technologies:
Detailed Information and Performance Data (continued)

Vendor name: UDELL TECHNOLOGIES, INC.	
Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED	
Number of full-scale cleanups initiated or completed by this firm using this technology:	
For equipment manufacturers - estimated or actual number of full-scal cleanups by other firms using this equipment:	.е
Major permits obtained for a full-scale system, and issuing authority (e.g., RCRA, TSCA, NPDES, and Clean Air Act).	
Permit Type: NA No full-scale systems Issuing Authority:	
Permit Type: Issuing Authority.:	
Permit Type: Issuing Authority.:	
Permit Type: Issuing Authority:	
Number of full-scale systems:	
3 Planned/in design	
Under construction	
2 Constructed	

Page No. 14 of 24 09/18/92

PART	2:	Pilot- a	and	Full-scale	e Te	chnologies:		
		Detailed	i Tr	formation	and	Performance	Data	(continued)

Vendor name: UDELL TECHNOLOGIES, INC.
Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED
Treatability Study Capabilities (Bench Scale)
Can you conduct bench-scale treatability studies on some types of waste at your location: \underline{X} yes _ no
Number of bench-scale studies conducted to date. Does not include tests on surrogate wastes:
Description of bench-scale testing procedures:
Soil samples are collected in the field using a hollow stem auger in either 2.0 or 2.5-in diameter brass sleeves. Undisturbed, the brass sleeve is uncapped and pushed into a modified 2.0 or 2.5-in diameter, 6.0-in long, schedule 40 stainless steel tube. The ends are capped and the entire holder is covered with insulation. Steam is injected at a constant rat at one end of the holder. After some period, condensate appears at the exit and is collected. Later, steam breaks through and i passed to a condenser before collection. The soil is analyzed for the contaminant concentrations before and after the test, an the collected liquid is also tested.

Page No. 15 of 24

09/18/92

SUMMARY OF PERFORMANCE DATA

Vendor name....: UDELL TECHNOLOGIES, INC.

Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED

Contaminant, contaminant group, or pollutant parameter:

Solvents

Untreated concentration range Mg/kg	Treated concentration range Mg/kg	Equipment Scale	
•	12.000		
to	to	Pilot scale	
2065.000	12.000		

Waste description:

Mixture of acetone, 2-butanone, TCA, TCE and BTEX

Soil classification:

sand

Comments:

Treated/untreated concentrations are for two soil samples recovered from the same depth, separated by 2 feet. Concentrations presented are average concentrations.

Vendor name...: <u>UDELL TECHNOLOGIES</u>, INC.

Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED

Contaminant, contaminant group, or pollutant parameter:

Gasoline

Untreated concentration range Mg/kg	Treated concentration range Mg/kg	Equipment Scale	
Mg/kg 	2.000		
to	to	Bench scale	
3000.000	2.000		

Waste description:

gasoline

Soil classification:

sand

Comments:

Vendor name...: UDELL TECHNOLOGIES, INC.

Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED

Contaminant, contaminant group, or pollutant parameter:

Diesel

Untreated concentration range Mg/kg	Treated concentration range Mg/kg	Equipment Scale	
1500.000	19.000		
to	to	Bench scale	
1500.000	19.000		

Waste description:

diesel

Soil classification:

silty clay with gravel

Comments:

Page No. 18 of 24

09/18/92

SUMMARY OF PERFORMANCE DATA

Vendor name...: UDELL TECHNOLOGIES, INC.

Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED

Contaminant, contaminant group, or pollutant parameter:

Petroleum Hydrocarbons - Total, Gasoline

Untreated concentration range Mg/kg	Treated concentration range Mg/kg	Equipment Scale	
4200.000	220.000		
to 4200.000	to 220.000	Bench scale	

Waste description:

ash from burn pit containing solvents and hydrocarbons

Soil classification:

ash

Comments:

Vendor name...: UDELL TECHNOLOGIES, INC.

Technology type: SOIL VAPOR EXTRACTION-THERMALLY ENHANCED

Contaminant, contaminant group, or pollutant parameter:

Jet fuel JP-5

Untreated concentration range Mg/kg	Treated concentration range Mg/kg	Equipment Scale
49000.000	59.000	
to	to	Bench scale
49000.000	59.000	

Waste description:

similar to kerosene

Soil classification:

sand

Comments:

Vendor name :	UDELL TECHNOLOGIES, I	NC.	
Technology type:	SOIL VAPOR EXTRACTION	-THERMALLY ENHA	ANCED
Site name :	Solvent Service, Inc.		
City :	San Jose	State:	<u>CA</u>
Country :	USA		
Project type :	PRIVATE		
Client contact :	Amit Nagpal		
Affiliation :	President		
Phone number :	(408) 259-9910		
Equipment Scale:			
_ Bench	scale		
X Pilot	scale		
_ Full s	cale		
Project status (Mo	onth/Year):		
Contracte	:	_	
Underway	:		
Completed	/To be completed : 08	/88	
Waste description	:		
Solvent re (35 cubic	ecycling facility; mix yards)	cture of 13 sol	vents in soil

Vendor i	name	:	UDELL TECHNOLOGIES, INC.
Technolo	ogy type	:	SOIL VAPOR EXTRACTION-THERMALLY ENHANCED
Site nar	ne	:	Municipal Waste Hauler
City		:	Huntington Beach State: CA
Country		:	USA
Project	type	:	PRIVATE
Client o	contact	:	Jay Dablow
Affiliat	tion	:	Hydro-Fluent, Inc.
Phone nu	umber	:	<u>(714) 966-1446</u>
Equipmen	nt Scale	:	
	Benc	h s	cale
	_ Pilo	t s	cale
	X Full	ВС	rale .
Project	status	(Mc	onth/Year):
	Contrac	ted	!
	Underwa	У	: <u>x</u>
	Complet	ed/	To be completed :
Waste de	scripti	on:	
			allons of diesel leaked into soil from underground upture.

Vendor name	:	UDELL TECHNOLOGIES, INC.		
Technology t	yp e:	SOIL VAPOR EXTRACTION-THEF	MALLY ENHA	ANCED
Site name	:	McClellan Air Force Base		*
City	:	Sacramento	State:	<u>CA</u>
Country	:	USA		
Project type	:	SUPERFUND/DOD LEAD		
Client conta	ict :	Capt. Fran Slavich		
Affiliation	:	McClellan AFB		
Phone number	:	(916) 643-1250		
Equipment Sc	ale:			
_ B	Bench :	scale		
_ P	Pilot	scale		
<u>x</u> F	ull s	cale		
Project stat	us (Mo	onth/Year):		
Cont	racte	: <u>05/91</u>		
Unde	rway	: <u>X</u>		
Comp	oleted,	/To be completed :		
Waste descri	.ption	:		
Burn	and o	disposal pit and underlying	soil - 20	,000 cub yd

Vendor name		UDELL TECHNOLOGIES, INC.
Technology type:	•	SOIL VAPOR EXTRACTION-THERMALLY ENHANCED
Site name :	:	Lemoore Naval Air Station
City :	:	Lemoore State: CA
Country :	:	USA
Project type :	:	DOD LEAD
Client contact :	:	Dr. Deh Bin Chan
Affiliation :	:	Naval Civil Engineering Laboratory
Phone number :	:	(805) 982-4191
Equipment Scale:	:	
_ Bench	3 2	cale
<u>X</u> Pilot	. 8	cale
_ Full	80	ale
Project status ((Mc	onth/Year):
Contract	:ed	: <u>05/91</u>
Underway	7	: <u>x</u>
Complete	ed/	To be completed :
Waste description	n:	
Jet fuel	L (JP-5) contaminated soil (2,000 cubic yards)

Vendor 1	name	:	UDELL TECHNOLOGIES, INC.		
Technol	ogy type	:	SOIL VAPOR EXTRACTION-THERMA	LLY ENHA	NCED
Site nar	me	:	Lawrence Livermore National	Laborato	ry
City		:	Livermore	State:	<u>CA</u>
Country		:	USA		
Project	type	:	DOE LEAD		
Client o	contact	:	Roger Aines		
Affiliat	tion	:	LLNL		
Phone nu	umber	:	(415) 423-7184		
Equipmen	nt Scale	:			
	_ Benc	h e	scale		
	_ Pilo	t a	scale		
	X Full	80	ale		
Project	status	(Mc	onth/Year):		
	Contrac	ted	: <u>NA</u>		
	Underwa	У	: <u>x</u>		
	Complet	ed/	To be completed :		
Waste de	escripti	on:			
	Gasolin	e c	contaminated soil		